
The Ames Stereo Pipeline:
NASA's Open Source Automated Stereogrammetry Software

A part of the NASA NeoGeography Toolkit

Version 2.5.2

Intelligent Robotics Group

NASA Ames Research Center

stereo-pipeline-owner@lists.nasa.gov

February 29, 2016

ii

Credits

The Ames Stereo Pipeline (ASP) was developed by the Intelligent Robotics Group (IRG), in the Intelligent
Systems Division at the National Aeronautics and Space Administration (NASA) Ames Research Center
in Mo�ett Field, CA. It builds on over ten years of IRG experience developing surface reconstruction tools
for terrestrial robotic �eld tests and planetary exploration.

Project Lead

• Dr. Ross Beyer (NASA/SETI Institute)

Development Team

• Oleg Alexandrov (NASA/Stinger-Gha�arian Technologies)

• Scott McMichael (NASA/Stinger-Gha�arian Technologies)

Former Developers

• Zachary Moratto (NASA/Stinger-Gha�arian Technologies)

• Michael J. Broxton (NASA/Carnegie Mellon University)

• Dr. Ara Ne�an (NASA/Carnegie Mellon University)

• Matthew Hancher (NASA)

• Mike Lundy (NASA/Stinger-Gha�arian Technologies)

• Vinh To (NASA/Stinger-Gha�arian Technologies)

Contributing Developer & Former IRG Terrain Reconstruction Lead

• Dr. Laurence Edwards (NASA)

A number of student interns have made signi�cant contributions to this project over the years: Kyle
Husmann (California Polytechnic State University), Sasha Aravkin (Washington State University), Alek-
sandr Segal (Stanford), Patrick Mihelich (Stanford University), Melissa Bunte (Arizona State University),
Matthew Faulkner (Massachusetts Institute of Technology), Todd Templeton (UC Berkeley), Morgon Kan-
ter (Bard College), Kerri Cahoy (Stanford University), and Ian Saxton (UC San Diego).

The open source Stereo Pipeline leverages stereo image processing work, past and present, led by Michael
J. Broxton (NASA/CMU), Dr. Laurence Edwards (NASA), Eric Zbinden (formerly NASA/QSS Inc.),
Dr. Michael Sims (NASA), and others in the Intelligent Systems Division at NASA Ames Research Center.
It has bene�ted substantially from the contributions of Dr. Keith Nishihara (formerly NASA/Stanford),
Randy Sargent (NASA/Carnegie Mellon University), Dr. Judd Bowman (formerly NASA/QSS Inc.), Clay
Kunz (formerly NASA/QSS Inc.), and Dr. Matthew Deans (NASA).

iii

Acknowledgments

The initial adaptation of Ames' stereo surface reconstruction tools to orbital imagers was a result of a NASA
funded, industry led project to develop automated digital elevation model (DEM) generation techniques for
the Mars Global Surveyor (MGS) mission. Our work with that project's Principal Investigator, Dr. Michael
Malin of Malin Space Science Systems (MSSS), and Co-Investigator, Dr. Laurence Edwards of NASA Ames,
inspired the idea of making stereo surface reconstruction technology available and accessible to a broader
community. We thank Dr. Malin and Dr. Edwards for providing the initial impetus that in no small way
made this open source stereo pipeline possible, and we thank Dr. Michael Caplinger, Joe Fahle and others
at MSSS for their help and technical assistance.

We'd also like to thank our friends and collaborators Dr. Randolph Kirk, Dr. Brent Archinal, Trent Hare, and
Mark Rosiek of the United States Geological Survey's (USGS's) Astrogeology Science Center in Flagsta�,
AZ, for their encouragement and willingness to share their experience and expertise by answering many of
our technical questions. We also thank them for their ongoing support and e�orts to help us evaluate our
work. Thanks also to the USGS Integrated Software for Imagers and Spectrometers (ISIS) team, especially
Je� Anderson and Kris Becker, for their help in integrating stereo pipeline with the USGS ISIS software
package.

Thanks go also to Dr. Mark Robinson, Jacob Danton, Ernest Bowman-Cisneros, Dr. Sam Laurence, and
Melissa Bunte at Arizona State University for their help in adapting the Ames Stereo Pipeline to lunar
data sets including the Apollo Metric Camera.

We'd also like to thank David Shean, Dr. Ben Smith, and Dr. Ian Joughin of the Applied Physics Laboratory
at the University of Washington for providing design direction for adapting Ames Stereo Pipeline to Earth
sciences.

Finally, we thank Dr. Ara Ne�an, and Dr. Laurence Edwards for their contributions to this software, and
Dr. Terry Fong (IRG Group Lead) for his management and support of the open source and public software
release process.

Portions of this software were developed with support from the following NASA Science Mission Directorate
(SMD) and Exploration Systems Mission Directorate (ESMD) funding sources: the Mars Technology Pro-
gram, the Mars Critical Data Products Initiative, the Mars Reconnaissance Orbiter mission, the Applied
Information Systems Research program grant #06-AISRP06-0142, the Lunar Advanced Science and Explo-
ration Research (LASER) program grants #07-LASER07-0148 and #11-LASER11-0112, the ESMD Lunar
Mapping and Modeling Program (LMMP), and the SMD Cryosphere Program.

Any opinions, �ndings, and conclusions or recommendations expressed in this documentation are those of
the authors and do not necessarily re�ect the views of the National Aeronautics and Space Administration.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Human vs. Computer: When to Choose Automation? . 2

1.3 Software Foundations . 3

1.3.1 NASA Vision Workbench . 3

1.3.2 The USGS Integrated Software for Imagers and Spectrometers 3

1.4 Getting Help and Reporting Bugs . 4

1.5 Typographical Conventions . 4

1.6 Referencing the Ames Stereo Pipeline in Your Work . 5

1.7 Warnings to Users of the Ames Stereo Pipeline . 5

I Getting Started 7

2 Installation 9

2.1 Binary Installation . 9

2.1.1 Quick Start for ISIS Users . 9

2.1.2 Quick Start for Digital Globe Users . 10

2.1.3 Common Errors . 10

2.2 Installation from Source . 11

2.3 Settings Optimization . 11

2.3.1 Performance Settings . 13

2.3.2 Logging Settings . 13

3 Tutorial: Processing Mars Orbiter Camera Imagery 15

3.1 Quick Start . 15

3.2 Preparing the Data . 15

3.2.1 Loading and Calibrating Images using ISIS . 16

3.2.2 Aligning Images . 16

v

CONTENTS

4 Tutorial: Processing Earth Digital Globe Imagery 19

4.1 Processing Raw . 20

4.2 Processing Map-Projected Imagery . 21

4.3 Handling CCD Boundary Artifacts . 21

4.4 Managing Camera Jitter . 21

4.5 Dealing with Terrain Lacking Large-Scale Features . 23

4.6 Processing Multi-Spectral Images . 24

5 The Next Steps 25

5.1 Stereo Pipeline in More Detail . 25

5.1.1 Setting Options in the stereo.default File . 25

5.1.2 Performing Stereo Correlation . 26

5.1.3 Running the GUI Frontend . 27

5.1.4 Specifying Settings on the Command Line . 27

5.1.5 Stereo on Multiple Machines . 27

5.1.6 Running Stereo with Map-projected Images . 27

5.1.7 Multi-View Stereo . 31

5.1.8 Diagnosing Problems . 32

5.1.9 Dealing with Long Run-times . 34

5.2 Visualizing and Manipulating the Results . 34

5.2.1 Building a 3D Mesh Model . 34

5.2.2 Building a Digital Elevation Model and Ortho Image 34

5.2.3 Orthorecti�cation of an Image From a Di�erent Source 35

5.2.4 Correcting Camera Positions and Orientations . 37

5.2.5 Alignment to Point Clouds From a Di�erent Source 37

5.2.6 Creating DEMs Relative to the Geoid/Areoid . 38

5.2.7 Converting to the LAS Format . 38

5.2.8 Generating Color Hillshade Maps . 38

5.2.9 Building Overlays for Moon and Mars Mode in Google Earth 39

5.2.10 Using DERT to Visualize Terrain Models . 40

6 Tips and Tricks 41

II The Stereo Pipeline in Depth 43

7 Stereo Correlation 45

7.1 Pre-Processing . 45

vi

7.2 Disparity Map Initialization . 47

7.2.1 Debugging Disparity Map Initialization . 48

7.2.2 Search Range Determination . 50

7.2.3 Local Homography . 51

7.3 Sub-pixel Re�nement . 51

7.4 Triangulation . 52

8 Bundle Adjustment 55

8.1 Overview . 55

8.2 Bundle adjustment using ASP . 56

8.3 Bundle adjustment using ISIS . 56

8.3.1 Tutorial: Processing Mars Orbital Camera Imagery 58

9 Solving for Camera Poses Based on Images 63

9.1 Camera Solve Overview . 63

9.2 Example: Apollo 15 Metric Camera . 64

9.3 Example: IceBridge DMS Camera . 66

10 Shape-from-Shading 71

10.1 Running sfs at 1 meter/pixel using a single image . 71

10.2 SfS with multiple images in the presence of shadows . 73

10.3 Insights for getting the most of sfs . 75

11 Data Processing Examples 77

11.1 Guidelines for Selecting Stereo Pairs . 77

11.2 Mars Reconnaissance Orbiter HiRISE . 77

11.2.1 Columbia Hills . 78

11.3 Mars Reconnaissance Orbiter CTX . 79

11.3.1 North Terra Meridiani . 80

11.4 Mars Global Surveyor MOC-NA . 81

11.4.1 Ceraunius Tholus . 81

11.5 Mars Exploration Rovers . 82

11.5.1 PANCAM, NAVCAM, HAZCAM . 82

11.6 K10 . 84

11.7 Lunar Reconnaissance Orbiter LROC NAC . 85

11.7.1 Lee-Lincoln Scarp . 85

11.8 Apollo 15 Metric Camera Images . 86

vii

CONTENTS

11.8.1 Ansgarius C . 86

11.9 Cassini ISS NAC . 88

11.9.1 Rhea . 88

11.10Digital Globe Imagery . 90

11.11GeoEye and Astrium Imagery / RPC Imagery . 90

11.12Dawn (FC) Framing Camera . 91

III Appendices 93

A Tools 95

A.1 stereo . 95

A.1.1 Entry Points . 96

A.1.2 Decomposition of Stereo . 96

A.2 stereo_gui . 97

A.2.1 Use as an Image Viewer . 98

A.2.2 Other Functionality . 98

A.3 parallel_stereo . 99

A.3.1 Advanced usage . 100

A.4 bundle_adjust . 102

A.4.1 Ground control points . 104

A.5 point2dem . 105

A.5.1 Comparing with MOLA Data . 106

A.5.2 Post Spacing . 106

A.5.3 Using with LAS or CSV Clouds . 107

A.6 point2mesh . 110

A.7 dem_mosaic . 112

A.8 dem_geoid . 115

A.9 dg_mosaic . 115

A.10 mapproject . 117

A.11 disparitydebug . 119

A.12 orbitviz . 119

A.13 cam2map4stereo.py . 121

A.14 pansharp . 122

A.15 datum_convert . 122

A.16 point2las . 123

viii

A.17 pc_align . 123

A.17.1 The input point clouds . 123

A.17.2 Alignment method . 124

A.17.3 File formats . 124

A.17.4 The alignment transform . 124

A.17.5 Applying a previous transform . 125

A.17.6 Error metrics and outliers . 125

A.17.7 Output point clouds and convergence history . 125

A.17.8 Manual alignment . 126

A.17.9 Troubleshooting . 126

A.18 pc_merge . 128

A.19 wv_correct . 128

A.20 lronac2mosaic.py . 129

A.21 image_calc . 129

A.22 colormap . 130

A.23 hillshade . 130

A.24 image2qtree . 131

A.25 geodi� . 132

A.26 sfs . 133

A.27 undistort_image . 134

A.28 camera_calibrate . 135

A.29 camera_solve . 135

A.30 icebridge_kmz_to_csv . 137

A.31 lvis2kml . 137

A.32 GDAL Tools . 137

B The stereo.default File 139

B.1 Preprocessing . 139

B.2 Correlation . 140

B.3 Subpixel Re�nement . 143

B.4 Filtering . 143

B.5 Post-Processing (Triangulation) . 144

C Guide to Output Files 147

D Pinhole Models 151

D.1 File Format . 153

ix

CONTENTS

Bibliography 156

x

Chapter 1

Introduction

The NASA Ames Stereo Pipeline (ASP) is a suite of automated geodesy and stereogrammetry tools designed
for processing planetary imagery captured from orbiting and landed robotic explorers on other planets or
here on Earth. It is designed to process stereo imagery captured by NASA, commercial spacecraft, aircraft,
and rovers, with and without accurate camera metadata. It can produce cartographic products including
digital elevation models, ortho-projected imagery, 3D models, and bundle adjusted networks of cameras.
These data products are suitable for science analysis, mission planning, and public outreach.

1.1 Background

The Intelligent Robotics Group (IRG) at the NASA Ames Research Center has been developing 3D sur-
face reconstruction and visualization capabilities for planetary exploration for more than a decade. First
demonstrated during the Mars Path�nder Mission, the IRG has delivered tools providing these capabil-
ities to the science operations teams of the Mars Polar Lander (MPL) mission, the Mars Exploration
Rover (MER) mission, the Mars Reconnaissance Orbiter (MRO) mission, and most recently the Lunar Re-
connaissance Orbiter (LRO) mission. A critical component technology enabling this work is the Ames Stereo
Pipeline (ASP). The Stereo Pipeline generates high quality, dense, texture-mapped 3D surface models from
stereo image pairs. In addition, ASP provides tools to perform many other cartography tasks including map
projection, point cloud and DEM registration, automatic registration of cameras, data format conversion,
and data visualization.

Although initially developed for ground control and scienti�c visualization applications, the Stereo Pipeline
has evolved to address orbital stereogrammetry and cartographic applications. In particular, long-range
mission planning requires detailed knowledge of planetary topography, and high resolution topography is
often derived from stereo pairs captured from orbit. Orbital mapping satellites are sent as precursors to
planetary bodies in advance of landers and rovers. They return a wealth of imagery and other data that
helps mission planners and scientists identify areas worthy of more detailed study. Topographic information
often plays a central role in this planning and analysis process.

Our recent development of the Stereo Pipeline coincides with a period of time when NASA orbital mapping
missions are returning orders of magnitude more data than ever before. Data volumes from the Mars and
Lunar Reconnaissance Orbiter missions now measure in the tens of terabytes. There is growing consensus
that existing processing techniques, which are still extremely human intensive and expensive, are no longer
adequate to address the data processing needs of NASA and the Planetary Science community. To pick an
example of particular relevance, the High Resolution Imaging Science Experiment (HiRISE) instrument has
captured a few thousand stereo pairs. Of these, only about two hundred stereo pairs have been processed to
date; mostly on human-operated, high-end photogrammetric workstations. It is clear that much more value

1

Chapter 1

Figure 1.1: This 3D model was generated from a Mars Orbiter Camera (MOC) image pair M01/00115
and E02/01461 (34.66N, 141.29E). The complete stereo reconstruction process takes approximately thirty
minutes on a 3.0 GHz workstation for input images of this size (1024 × 8064 pixels). This model, shown
here without vertical exaggeration, is roughly 2 km wide in the cross-track dimension.

could be extracted from this valuable raw data if a more streamlined, e�cient process could be developed.

The Stereo Pipeline was designed to address this very need. By applying recent advances in computer
vision, we have created an automated process that is capable of generating high quality digital elevation
models (DEMs) with minimal human intervention. Users of the Stereo Pipeline can expect to spend some
time picking a handful of settings when they �rst start processing a new type of imagery, but once this is
done, the Stereo Pipeline can be used to process tens, hundreds, or even thousands of stereo pairs without
further adjustment. With the release of this software, we hope to encourage the adoption of this tool chain
at institutions that run and support these remote sensing missions. Over time, we hope to see this tool
incorporated into ground data processing systems alongside other automated image processing pipelines.
As this tool continues to mature, we believe that it will be capable of producing digital elevation models of
exceptional quality without any human intervention.

1.2 Human vs. Computer: When to Choose Automation?

When is it appropriate to choose automated stereo mapping over the use of a conventional, human-operated
photogrammetric workstation? This is a philosophical question with an answer that is likely to evolve over
the coming years as automated data processing technologies become more robust and widely adopted. For
now, our opinion is that you should always rely on human-guided, manual data processing techniques for
producing mission critical data products for missions where human lives or considerable capital resources
are at risk. In particular, maps for landing site analysis and precision landing absolutely require the bene�t
of an expert human operator to eliminate obvious errors in the DEMs, and also to guarantee that the proper
procedures have been followed to correct satellite telemetry errors so that the data have the best possible
geodetic control.

2

Introduction

When it comes to using DEMs for scienti�c analysis, both techniques have their merits. Human-guided
stereo reconstruction produces DEMs of unparalleled quality that bene�t from the intuition and experience
of an expert. The process of building and validating these DEMs is well-established and accepted in the
scienti�c community.

However, only a limited number of DEMs can be processed to this level of quality. For the rest, automated
stereo processing can be used to produce DEMs at a fraction of the cost. The results are not necessarily
less accurate than those produced by the human operator, but they will not bene�t from the same level of
scrutiny and quality control. As such, users of these DEMs must be able to identify potential issues, and
be on the lookout for errors that may result from the improper use of these tools.

We recommend that all users of the Stereo Pipeline take the time to thoroughly read this documentation
and build an understanding of how stereo reconstruction and bundle adjustment can be best used together
to produce high quality results. You are welcome to contact us if you have any questions (section 1.4).

1.3 Software Foundations

1.3.1 NASA Vision Workbench

The Stereo Pipeline is built upon the VisionWorkbench software which is a general purpose image processing
and computer vision library also developed by the IRG. Some of the tools discussed in this document
are actually Vision Workbench programs, and any distribution of the Stereo Pipeline requires the Vision
Workbench. This distinction is important only if compiling this software.

1.3.2 The USGS Integrated Software for Imagers and Spectrometers

For processing non-terrestrial NASA satellite imagery, Stereo Pipeline must be installed alongside a copy of
United States Geological Survey (USGS) Integrated Software for Imagers and Spectrometers (ISIS). ISIS
is however not required for processing Digital Globe images of Earth.

ISIS is widely used in the planetary science community for processing raw spacecraft imagery into high
level data products of scienti�c interest such as map-projected and mosaicked imagery [1, 10, 32]. We chose
ISIS because (1) it is widely adopted by the planetary science community, (2) it contains the authoritative
collection of geometric camera models for planetary remote sensing instruments, and (3) it is open source
software that is easy to leverage.

By installing the Stereo Pipeline, you will be adding an advanced stereo image processing capability that
can be used in your existing ISIS work�ow. The Stereo Pipeline supports the ISIS �cube� (.cub) �le format,
and can make use of the ISIS camera models and ancillary information (i.e. SPICE kernels) for imagers
on many NASA spacecraft. The use of this single standardized set of camera models ensures consistency
between products generated in the Stereo Pipeline and those generated by ISIS. Also by leveraging ISIS
camera models, the Stereo Pipeline can process stereo pairs captured by just about any NASA mission.

3

Chapter 1

1.4 Getting Help and Reporting Bugs

All bugs, feature requests, and general discussion should be sent to the Ames Stereo Pipeline user mailing
list:

stereo-pipeline@lists.nasa.gov

To subscribe to this list, send an empty email message with the subject `subscribe' (without the quotes) to:

stereo-pipeline-request@lists.nasa.gov

To contact the developers and project manager directly, send mail to:

stereo-pipeline-owner@lists.nasa.gov

When you submit a bug report, it may be helpful to attach the logs output by stereo and other tools
(section 2.3.2).

1.5 Typographical Conventions

Names of programs that are meant to be run on the command line are written in a constant-width font,
like the stereo program, as are options to those programs.

An indented line of constant-width text can be typed into your terminal, these lines will either begin with
a `>' to denote a regular shell, or with `ISIS' which denotes an ISIS-enabled shell (which means you have
to set the ISISROOT environment variable and sourced the appropriate ISIS 3 Startup script, as detailed in
the ISIS 3 instructions).

> ls

ISIS 3> pds2isis

Italicized constant-width text denotes an option or argument that a user will need to supply. For example,
`stereo E0201461.map.cub M0100115.map.cub out' is speci�c, but `stereo left-image right-image

out' indicates that left-image and right-image are not the names of speci�c �les, but dummy pa-
rameters which need to be replaced with actual �le names.

Square brackets denote optional options or values to a command, and items separated by a vertical bar are
either aliases for each other, or di�erent, speci�c options. Default arguments are pre�xed by an equals sign
within parentheses, and line continuation with a backslash:

point2dem [--help|-h] [-r moon|mars] [-s float(=0)] \
[-o output-filename] pointcloud -PC.tif

The above indicates a run of the point2dem program. The only argument that it requires is a point cloud
�le, which is produced by the stereo program and ends in -PC.tif, although its pre�x could be anything
(hence the italics for that part). Everything else is in square brackets indicating that they are optional.

Here, --help and -h refer to the same thing. Similarly, the argument to the -r option must be either moon
or mars. The -s option takes a �oating point value as its argument, and has a default value of zero. The
-o option takes a �lename that will be used as the output DEM.

Although there are two lines of constant-width text, the backslash at the end of the �rst line indicates that
the command continues on the second line. You can either type everything into one long line on your own
terminal, or use the backslash character and a return to continue typing on a second line in your terminal.

4

mailto:stereo-pipeline@lists.nasa.gov
mailto:stereo-pipeline-request@lists.nasa.gov
mailto:stereo-pipeline-owner@lists.nasa.gov

Introduction

1.6 Referencing the Ames Stereo Pipeline in Your Work

Although no peer-reviewed paper or report yet exists which details the Ames Stereo Pipeline (see the warning
below about this being research software), if you do use this software in your work, we'd appreciate it if
you referenced one or more of these abstracts:

Moratto, Z. M., M. J. Broxton, R. A. Beyer, M. Lundy, and K. Husmann. 2010. Ames Stereo Pipeline,
NASA's Open Source Automated Stereogrammetry Software. Lunar and Planetary Science Confer-
ence 41, abstract #2364. [ADS Abstract].

Broxton, M. J. and L. J. Edwards. 2008. The Ames Stereo Pipeline: Automated 3D Surface Recon-
struction from Orbital Imagery. Lunar and Planetary Science Conference 39, abstract #2419. [ADS
Abstract].

1.7 Warnings to Users of the Ames Stereo Pipeline

Ames Stereo Pipeline is a research product. There may be bugs or incomplete features. We reserve the
ability to change the API and command line options of the tools we provide. Although we hope you will
�nd this release helpful, you may use it at your own risk. Please check each release's NEWS �le to see a
summary of our recent changes.

While we are con�dent that the algorithms used by this software are robust, they have not been sys-
tematically tested or rigorously compared to other methods in the peer-reviewed literature. We strongly
recommend that you consult us �rst before publishing any results based on the cartographic products
produced by this software.

5

http://adsabs.harvard.edu/abs/2010LPI....41.2364M
http://adsabs.harvard.edu/abs/2008LPI....39.2419B
http://adsabs.harvard.edu/abs/2008LPI....39.2419B

6

Part I

Getting Started

7

Chapter 2

Installation

2.1 Binary Installation

This is the recommended method. Only the Stereo Pipeline binaries are required. ISIS is required only
for users who wish to process NASA non-terrestrial imagery. A full ISIS installation is not required for
operation of Stereo Pipeline programs (only the ISIS data directory is needed), but is required for certain
preprocessing steps before Stereo Pipeline programs are run for planetary data. If you only want to process
terrestrial Digital Globe imagery, skip to section 2.1.2.

Stereo Pipeline Tarball
The main Stereo Pipeline page is http://irg.arc.nasa.gov/ngt/stereo. Download the option that
matches the platform you wish to use. The recommended, but optional, ISIS version is listed next to
the name.

USGS ISIS
If you are working with non-terrestrial imagery, you will need to install ISIS so that you can perform
preprocessing such as radiometric calibration and ephemeris attachment. The ISIS installation guide
is at http://isis.astrogeology.usgs.gov/documents/InstallGuide. You must use their binaries
as-is; if you need to recompile, you can follow the Source Installation guide for the Stereo Pipeline in
Section 2.2. Note also that the USGS provides only the current version of ISIS and the previous version
(denoted with a `_OLD' su�x) via their rsync service. If the current version is newer than the version
of ISIS that the Stereo Pipeline is compiled against, be assured that we're working on rolling out a
new version. However, since Stereo Pipeline has its own self-contained version of ISIS's libraries built
internally, you should be able to use a newer version of ISIS with the now dated version of ASP. This
is assuming no major changes have taken place in the data formats or camera models by USGS. At
the very least, you should be able to rsync the previous version of ISIS if a break is found. To do so,
view the listing of modules that is provided via the `rsync isisdist.astrogeology.usgs.gov::'
command. You should see several modules listed with the `_OLD' su�x. Select the one that is
appropriate for your system, and rsync according to the instructions.

In closing, running the Stereo Pipeline executables only requires that you have downloaded the ISIS
secondary data and have appropriately set the ISIS3DATA environment variable. This is normally
performed for the user by ISIS startup script, $ISISROOT/scripts/isis3Startup.sh.

2.1.1 Quick Start for ISIS Users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.

9

http://irg.arc.nasa.gov/ngt/stereo
http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://irg.arc.nasa.gov/ngt/stereo

Chapter 2

Fetch ISIS Binaries
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Fetch ISIS Data
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Untar Stereo Pipeline
tar xzvf StereoPipeline-VERSION-ARCH-OS.tar.gz

Add Stereo Pipeline to Path (optional)
bash: export PATH="/path/to/StereoPipeline /bin:${PATH}"

csh: setenv PATH "/path/to/StereoPipeline /bin:${PATH}"

Set Up ISIS
bash:

export ISISROOT=/path/to/isisroot

source $ISISROOT/scripts/isis3Startup.sh

csh:
setenv ISISROOT /path/to/isisroot

source $ISISROOT/scripts/isis3Startup.csh

Try It Out
See Chapter 3 for an example.

2.1.2 Quick Start for Digital Globe Users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.

Untar Stereo Pipeline
tar xvfz StereoPipeline-VERSION-ARCH-OS.tar.gz

Try It Out
Processing Earth imagery is described in the data processing tutorial in chapter 4.

2.1.3 Common Errors

Here are some errors you might see, and what it could mean. Treat these as templates for problems. In
practice, the error messages might be slightly di�erent.

I/O ERROR Unable to open [$ISIS3DATA/Some/Path/Here].

Stereo step 0: Preprocessing failed

You need to set up your ISIS environment or manually set the correct location for ISIS3DATA.

point2mesh stereo-output-PC.tif stereo-output-L.tif

[...]

99% Vertices: [**] Complete!

> size: 82212 vertices

Drawing Triangle Strips

Attaching Texture Data

zsh: bus error point2mesh stereo-output-PC.tif stereo-output-L.tif

10

http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://irg.arc.nasa.gov/ngt/stereo

Installation

The source of this problem is an old version of OpenSceneGraph in your library path. Check your
LD_LIBRARY_PATH (for Linux), DYLD_LIBRARY_PATH (for OSX), or your DYLD_FALLBACK_LIBRARY_PATH (for
OSX) to see if you have an old version listed, and remove it from the path if that is the case. It is not
necessary to remove the old versions from your computer, you just need to remove the reference to them
from your library path.

bash: stereo: command not found

You need to add the bin directory of your deployed Stereo Pipeline installation to the environmental
variable PATH.

2.2 Installation from Source

This method is for advanced users. You will need to fetch the Stereo Pipeline source code from GitHub at
https://github.com/NeoGeographyToolkit/StereoPipeline and then follow the instructions speci�ed
in INSTALLGUIDE.

2.3 Settings Optimization

Finally, the last thing to be done for Stereo Pipeline is to setup up Vision Workbench's render and logging
settings. This step is optional, but for best performance some thought should be applied here.

Vision Workbench is a multithreaded image processing library used by Stereo Pipeline. The settings by
which Vision Workbench processes is con�gurable by having a .vwrc �le hidden in your home directory.
Below is an example.

11

https://github.com/NeoGeographyToolkit/StereoPipeline

Chapter 2

1 # This is an example VW configuration file. Save this file to ~/.vwrc

2 # to adjust the VW log settings, even if the program is already running.

3
4 # General settings

5 [general]

6 default_num_threads = 16

7 write_pool_size = 40

8 system_cache_size = 1024000000 # ~ 1 GB

9
10 # The following integers are associated with the log levels throughout the

11 # Vision Workbench. Use these in the log rules below.

12 #

13 # ErrorMessage = 0

14 # WarningMessage = 10

15 # InfoMessage = 20

16 # DebugMessage = 30

17 # VerboseDebugMessage = 40

18 # EveryMessage = 100

19 #

20 # You can create a new log file or adjust the settings

21 # for the console log:

22 # logfile <filename>

23 # - or -

24 # logfile console

25
26 # Once you have created a logfile (or selected the console), you can

27 # add log rules using the following syntax. (Note that you can use

28 # wildcard characters '*' to catch all log_levels for a given

29 # log_namespace, or vice versa.)

30
31 # <log_level> <log_namespace>

32
33 # Below are examples of using the log settings.

34
35 # Turn on various logging levels for several subsystems, with the

36 # output going to the console (standard output).

37 [logfile console]

38 # Turn on error and warning messages for the thread subsystem.

39 10 = thread

40 # Turn on error, warning, and info messages for the asp subsystem.

41 20 = asp

42 # Turn on error, warning, info, and debug messages for the stereo subsystem.

43 30 = stereo

44 # Turn on every single message for the cache subsystem (this will be

45 # extremely verbose and is not recommended).

46 # 100 = cache

47 # Turn off all progress bars to the console (not recommended).

48 # 0 = *.progress

49
50 # Turn on logging of error and warning messages to a file for the

51 # stereo subsystem. Warning: This file will be always appended to, so

52 # it should be deleted periodically.

53 # [logfile /tmp/vw_log.txt]

54 # 10 = stereo

There are a lot of possible options that can be implemented in the above example. Let's cover the most
important options and the concerns the user should have when selecting a value.

12

Installation

2.3.1 Performance Settings

default_num_threads (default=2)
This sets the maximum number of threads that can be used for rendering. When stereo's subpixel_rfne
is running you'll probably notice 10 threads are running when you have default_num_threads set
to 8. This is not an error, you are seeing 8 threads being used for rendering, 1 thread for holding
main()'s execution, and �nally 1 optional thread acting as the interface to the �le driver.

It is usually best to set this parameter equal to the number of processors on your system. Be sure to
include the number of logical processors in your arithmetic if your system supports hyper-threading.

Adding more threads for rasterization increases the memory demands of Stereo Pipeline. If your
system is memory limited, it might be best to lower the default_num_threads option. Remember
that 32 bit systems can only allocate 4 GB of memory per process. Despite Stereo Pipeline being a
multithreaded application, it is still a single process.

write_pool_size (default=21)
The write_pool_size option represents the max waiting pool size of tiles waiting to be written to
disk. Most �le formats do not allow tiles to be written arbitrarily out of order. Most however will
let rows of tiles to be written out of order, while tiles inside a row must be written in order. Because
of the previous constraint, after a tile is rasterized it might spend some time waiting in the `write
pool' before it can be written to disk. If the `write pool' �lls up, only the next tile in order can be
rasterized. That makes Stereo Pipeline perform like it is only using a single processor.

Increasing the write_pool_sizemakes Stereo Pipeline more able to use all processing cores in the sys-
tem. Having this value too large can mean excessive use of memory. For 32 bit systems again, they can
run out of memory if this value is too high for the same reason as described for default_num_threads.

system_cache_size (default=805306368)
Accessing a �le from the hard drive can be very slow. It is especially bad if an application needs
to make multiple passes over an input �le. To increase performance, Vision Workbench will usually
leave an input �le stored in memory for quick access. This �le storage is known as the 'system cache'
and its max size is dictated by system_cache_size. The default value is 768 MB.

Setting this value too high can cause your application to crash. It is usually recommend to keep this
value around 1/4 of the maximum available memory on the system. For 32 bit systems, this means
don't set this value any greater than 1 GB. The units of this property is in bytes.

2.3.2 Logging Settings

The messages displayed in the console by Stereo Pipeline are grouped into several namespaces, and by level
of verbosity. An example of customizing Stereo Pipeline's output is given in the .vwrc �le shown above.

Several of the tools in Stereo Pipeline, including stereo, automatically append the information displayed
in the console to a log �le in the current output directory. These logs contain in addition some data about
your system and settings, which may be helpful in resolving problems with the tools.

It is also possible to specify a global log �le to which all tools will append to, as illustrated in .vwrc.

13

14

Chapter 3

Tutorial: Processing Mars Orbiter Camera

Imagery

3.1 Quick Start

The Stereo Pipeline package contains GUI and command-line programs that convert a stereo pair in the
ISIS cube format into a 3D �point cloud� image. This is an intermediate format that can be passed along to
one of several programs that convert a point cloud into a mesh for 3D viewing, a gridded digital elevation
model (DEM) for GIS purposes, or a LAS/LAZ point cloud.

There are a number of ways to �ne-tune parameters and analyze the results, but ultimately this software
suite takes images and builds models in a mostly automatic way. To create a point cloud �le, you simply
pass two image �les to the stereo command:

ISIS 3> stereo left_input_image.cub right_input_image.cub stereo-output

Alternatively, the stereo_gui frontend can be invoked, with the same options, as described in section A.2.
This tool makes it possible to select small clips on which to run stereo.

The string stereo-output is an arbitrary output pre�x, it is used when generating names for stereo output
�les. For example, it can be set to results/output, in which case all output �les will be in the results

directory and start with the pre�x output. See section 5.1 for a more detailed discussion.

You can then make a visualizable mesh or a DEM �le with the following commands (the stereo-output -PC.tif
and stereo-output -L.tif �les are created by the stereo program above):

ISIS 3> point2mesh stereo-output-PC.tif stereo-output-L.tif

ISIS 3> point2dem stereo-output-PC.tif

More details are provided in section 5.2.

3.2 Preparing the Data

The data set that is used in the tutorial and examples below is a pair of Mars Orbital Camera (MOC)
[18, 17] images whose Planetary Data System (PDS) Product IDs are M01/00115 and E02/01461. This
data can be downloaded from the PDS directly, or they can be found in the examples/MOC directory of
your Stereo Pipeline distribution.

15

Chapter 3

Figure 3.1:
This �gure shows
E0201461.cub and
M0100115.cub open
in ISIS's qview
program. The view
on the left shows
their full extents
at the same zoom
level, showing how
they have di�erent
ground scales. The
view on the right
shows both images
zoomed in on the
same feature.

3.2.1 Loading and Calibrating Images using ISIS

These raw PDS images (M0100115.imq and E0201461.imq) need to be imported into the ISIS environment
and radiometrically calibrated. You will need to be in an ISIS environment (have set the ISISROOT envi-
ronment variable and sourced the appropriate ISIS 3 startup script, as detailed in the ISIS 3 instructions;
we will denote this state with the `ISIS 3>' prompt). Then you can use the mocproc program, as follows:

ISIS 3> mocproc from=M0100115.imq to=M0100115.cub Mapping=NO

ISIS 3> mocproc from=E0201461.imq to=E0201461.cub Mapping=NO

There are also Ingestion and Calibration parameters whose defaults are `YES' which will bring the image
into the ISIS format and perform radiometric calibration. By setting the Mapping parameter to `NO', the
resultant �le will be an ISIS cube �le that is calibrated, but not map-projected. Note that while we have
not explicitly run spiceinit, the Ingestion portion of mocproc quietly ran spiceinit for you (you'll �nd
the record of it in the ISIS Session Log, usually written out to a �le named print.prt). Refer to Figure 3.1
to see the results at this stage of processing.

Datasets for other type of cameras or other planets can be pre-processed similarly, using the ISIS tools
speci�c to them.

3.2.2 Aligning Images

Once the .cub �les are obtained, it is possible to run stereo right away, as

ISIS 3> stereo E0201461.cub M0100115.cub \

--alignment-method affineepipolar \

-s stereo.default.example results/output

16

Tutorial: Processing Mars Orbiter Camera Imagery

In this case, the �rst thing stereo does is to internally align (or rectify the images), which helps with �nding
stereo matches. Here we have used affineepipolar alignment. Another option is to use homography

alignment, as described in section 5.1.1.

Alternatively, the images can be aligned externally, by map-projecting them in ISIS. External alignment
can sometimes give better results than the simple internal alignment described earlier, especially if the
images are taken from very di�erent perspectives, or if the curvature of the planet/body being imaged is
non-negligible.

We will now describe how to do this alignment, but we also provide the cam2map4stereo.py program (page
121) which performs this work automatically for you. (Also note that ASP has its own internal way of
map-projecting images, which we believe is preferable. That approach is described in section 5.1.6.)

The ISIS cam2map program will map-project these images:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

Notice the order in which the images were run through cam2map. The �rst projection with M0100115.cub

produced a map-projected image centered on the center of that image. The projection of E0201461.cub
used the map= parameter to indicate that cam2map should use the same map projection parameters as
those of M0100115.map.cub (including center of projection, map extents, map scale, etc.) in creating the
projected image. By map-projecting the image with the worse resolution �rst, and then matching to that,
we ensure two things: (1) that the second image is summed or scaled down instead of being magni�ed up,
and (2) that we are minimizing the �le sizes to make processing in the Stereo Pipeline more e�cient.

Technically, the same end result could be achieved by using the mocproc program alone, and using its map=
M0100115.map.cub option for the run of mocproc on E0201461.cub (it behaves identically to cam2map).
However, this would not allow for determining which of the two images had the worse resolution and
extracting their minimum intersecting bounding box (see below). Furthermore, if you choose to conduct
bundle adjustment (see Chapter 8, page 55) as a pre-processing step, you would do so between mocproc (as
run above) and cam2map.

The above procedure is in the case of two images which cover similar real estate on the ground. If you have
a pair of images where one image has a footprint on the ground that is much larger than the other, only the
area that is common to both (the intersection of their areas) should be kept to perform correlation (since
non-overlapping regions don't contribute to the stereo solution). If the image with the larger footprint size
also happens to be the image with the better resolution (i.e. the image run through cam2map second with
the map= parameter), then the above cam2map procedure with matchmap=true will take care of it just �ne.
Otherwise you'll need to �gure out the latitude and longitude boundaries of the intersection boundary (with
the ISIS camrange program). Then use that smaller boundary as the arguments to the MINLAT, MAXLAT,
MINLON, and MAXLON parameters of the �rst run of cam2map. So in the above example, after mocproc with
Mapping= NO you'd do this:

ISIS 3> camrange from=M0100115.cub

... lots of camrange output omitted ...

Group = UniversalGroundRange

LatitudeType = Planetocentric

LongitudeDirection = PositiveEast

LongitudeDomain = 360

MinimumLatitude = 34.079818835324

MaximumLatitude = 34.436797628116

MinimumLongitude = 141.50666207418

17

Chapter 3

MaximumLongitude = 141.62534719278

End_Group

... more output of camrange omitted ...

ISIS 3> camrange from=E0201461.cub

... lots of camrange output omitted ...

Group = UniversalGroundRange

LatitudeType = Planetocentric

LongitudeDirection = PositiveEast

LongitudeDomain = 360

MinimumLatitude = 34.103893080982

MaximumLatitude = 34.547719435156

MinimumLongitude = 141.48853937384

MaximumLongitude = 141.62919740048

End_Group

... more output of camrange omitted ...

Now compare the boundaries of the two above and determine the intersection to use as the boundaries for
cam2map:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub DEFAULTRANGE=CAMERA \

MINLAT=34.10 MAXLAT=34.44 MINLON=141.50 MAXLON=141.63

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

You only have to do the boundaries explicitly for the �rst run of cam2map, because the second one uses the
map= parameter to mimic the map-projection of the �rst. These two images are not radically di�erent in
spatial coverage, so this is not really necessary for these images, it is just an example.

Again, unless you are doing something complicated, using the cam2map4stereo.py program (page 121) will
take care of all these steps for you.

At this stage we can run the stereo program with map-projected images:

ISIS 3> stereo E0201461.map.cub M0100115.map.cub --alignment-method none \

-s stereo.default.example results/output

Here we have used alignment-method none since cam2map4stereo.py brought the two images into the
same perspective and using the same resolution. If you invoke cam2map independently on the two images,
without matchmap=true, their resolutions may di�er, and using an alignment method rather than none to
correct for that is still necessary.

Now you may skip to chapter 5 which will discuss the stereo program in more detail and the other tools
in ASP.

18

Chapter 4

Tutorial: Processing Earth Digital Globe

Imagery

In this chapter we will focus on how to process Earth imagery, or more speci�cally Digital Globe data. This
is di�erent from our previous chapter in that at no point will we be using ISIS utilities. This is because
ISIS only supports NASA instruments, while most Earth imagery comes from commercial providers.

In addition to Digital Globe's satellites, ASP supports any Earth imagery that uses the RPC camera model
format. How to process such data is described in section 11.11, although following this tutorial may still
be insightful even if your data is not from Digital Globe.

Digital Globe provides imagery from Quick Bird and the three World View satellites. These are the hardest
images to process with Ames Stereo Pipeline because they are exceedingly large, much larger than HiRISE
imagery (the GUI interface can be used to run stereo on just a portion of the images). There is also a wide
range of terrain challenges and atmospheric e�ects that can confuse ASP. Trees are particularly di�cult for
us since their texture is nearly nadir and perpendicular to our line of sight. It is important to know that the
driving force behind our support for Digital Globe imagery is to create models of ice and bare rock. That
is the type of imagery that we have tested with and have focused on. If we can make models of wooded or
urban areas, that is a bonus, but we can't provide any advice for how to perform or improve the results if
you choose to use ASP in that way.

ASP can only process Level 1B satellite imagery, and cannot process Digital Globe's aerial images.

The camera information for Digital Globe images is contained in an XML �le for each image. In addition
to the exact linear camera model, the XML �le also has its RPC approximation. In this chapter we will
focus only on processing data using the linear camera model. For more detail on RPC camera models we
refer as before to section 11.11.

Our implementation of the linear camera model only models the geometry of the imaging hardware itself and
velocity aberration. We do not currently model refraction due to light bending in Earth's atmosphere. It is
our understanding that this could represent misplacement of points up to a meter for some imagery. However
this is still smaller error than the error from measurement of the spacecraft's position and orientation. The
latter can be corrected using bundle adjustment, ideally used with ground control points (section A.4).
Alternatively, the pc_align tool discussed in section 5.2.5 can be used to align the terrain obtained from
ASP to an accurate set of ground measurements.

In the next two sections we will show how to process unmodi�ed and map-projected variants of World
View imagery. This steps will be the same for Digital Globe's other satellites. The imagery we are using
are from the free stereo pair example of Lucknow, India available from Digital Globe's website [13]. These
images represent a non-ideal problem for us since this is an urban location, but at least you should be able

19

Chapter 4

to download this imagery yourself and follow along.

4.1 Processing Raw

After you have downloaded the example stereo imagery of India, you will �nd a directory titled

052783824050_01_P001_PAN

It has a lot of �les and many of them contain redundant information just displayed in di�erent formats.
We are interested only in the TIF or NTF imagery and the similarly named XML �les.

Further investigation of the �les downloaded will show that there are in fact 4 image �les. This is because
Digital Globe breaks down a single observation into multiple �les for what we assume are size reasons. These
�les have a pattern string of �_R[N]C1-�, where N increments for every subframe of the full observation.
The tool named dg_mosaic can be used to mosaic (and optionally reduce the resolution of) such a set of
sub-observations into a single image �le and create an appropriate camera �le

> dg_mosaic 12FEB12053305*TIF --output-prefix 12FEB12053305 --reduce-percent 50

and analogously for the second set. See section A.9 for more details. The stereo program can use either
the original or the mosaicked images.

Since we are ingesting these images raw, it is strongly recommended that you use a�ne epipolar alignment
to reduce the search range. The stereo command and a rendering in QGIS are shown below.

> stereo -t dg --subpixel-mode 1 --alignment-method affineepipolar \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML dg/dg

Alternatively, the stereo_gui frontend can be invoked, with the same options, as described in section A.2.

Figure 4.1: Example colorized height map and ortho image output.

Above, we have used subpixel-mode 1 which is less accurate but reasonably fast. More details about how
to set this and other stereo parameters can be found in section 5.1.1.

20

Tutorial: Processing Earth Digital Globe Imagery

It is important to note that we could have performed stereo using the approximate RPC model instead of
the exact linear camera model (both models are in the same XML �le), by switching the session in the
stereo command above from -t dg to -t rpc. The RPC model is somewhat less accurate, so the results
will not be the same, in our experiments we've seen di�erences in the 3D terrains using the two approaches
of 5 meters or more.

4.2 Processing Map-Projected Imagery

ASP computes the highest quality 3D terrain if used with images map-projected onto a low-resolution DEM
that is used as an initial guess. This process is described in section 5.1.6.

4.3 Handling CCD Boundary Artifacts

Digital Globe World View images [12] may exhibit slight subpixel artifacts which manifest themselves as
discontinuities in the 3D terrain obtained using ASP. We provide a tool named wv_correct, that can largely
correct such artifacts for World View-1 and World View-2 images for most TDI. It can be invoked as follows:

> wv_correct image_in.ntf image.xml image_out.tif

The corrected images can be used just as the originals, and the camera models do not change. When
working with such imagery, we recommend that CCD artifact correction happen �rst, on original un-
projected imagery. Afterward images can be mosaicked with dg_mosaic, map-projected, and the resulting
data used to run stereo and create terrain models.

This tool is described in section A.19, and an example of using it is in Figure 4.2.

Figure 4.2: Example of a hill-shaded terrain obtained using stereo without (left) and with (right) CCD
boundary artifact corrections applied using wv_correct.

4.4 Managing Camera Jitter

In this section we will talk about the second largest source of inaccuracies in Digital Globe imagery, after
CCD artifacts, namely jitter, and how to correct it.

It is very important to note, right from the beginning, that the order in which these corrections need to be
handled is the following. First, CCD artifacts are corrected. Then, optionally, images are mosaicked with
dg_mosaic and map-projected. And jitter should be handled last, during stereo. An exception is made for
WV03 images, for which CCD artifacts do not appear to have a signi�cant e�ect.

21

Chapter 4

Camera jitter has its origin in the fact that the measured position and orientation of the image-acquiring
line sensor as speci�ed in a camera XML �le is usually not perfectly accurate, the sensor in fact wiggles
slightly from where it is assumed to be as it travels through space and appends rows of pixels to the image.
This results in slight errors in the �nal DEM created using stereo. Those are most clearly seen in the
intersection error map output by invoking point2dem --errorimage.

ASP provides support for correcting this jitter, at least its lower-frequency component. During stereo,
right before the triangulation step, so after the left-to-right image disparity is computed, it can solve for
adjustments to apply to the satellite position and orientation. Those adjustments are placed along-track
(hence at several lines in the image) with interpolation between them. This is quite analogous to what
bundle_adjust is doing, except that the latter uses just one adjustment for each image.

This process can be triggered by invoking stereo with --image-lines-per-piecewise-adjustment arg.
A recommended value here is 1000, though it is suggested to try several values. A smaller value of arg
will result in more adjustments being used (each adjustment being responsible for fewer image lines),
hence providing �ner-grained control, though making this number too small may result in over-�tting and
instability. A smaller value here will also require overall more interest point matches (as computed from
the disparity), which is set via --num-matches-for-piecewise-adjustment.

Jitter correction is more e�ective if stereo is preceded by bundle adjustment, with the adjusted cameras
then being passed to stereo via --bundle-adjust-prefix.

If it appears that the adjustments show some instability at the starting and ending lines due to not enough
matches being present (as deduced from examining the intersection error image), the locations of the
�rst and last adjustment (and everything in between) may be brought closer to each other, by modifying
--piecewise-adjustment-percentiles. Its values are by default 5 and 95, and could be set for example
to 10 and 90. For very tall images, it may be desirable to use instead values closer to 0 and 100.

Section B.5 has the full list of parameters used in jitter correction.

In order for jitter correction to be successful, the disparity map (*-F.tif) should be of good quality. If
that is not the case, it is suggested to redo stereo, and use, for example, map-projected images, and in the
case of terrain lacking large scale features, the value corr-seed-mode 3 (section 4.5).

An illustration of jitter correction is given in �gure 4.3.

Figure 4.3: Example of a colorized intersection error map before (left) and after jitter correction.

22

Tutorial: Processing Earth Digital Globe Imagery

4.5 Dealing with Terrain Lacking Large-Scale Features

Stereo Pipeline's approach to performing correlation is a two-step pyramid algorithm, in which low-
resolution versions of the input images are created, the disparity map (output_prefix -D_sub.tif) is
found, and then this disparity map is re�ned using increasingly higher-resolution versions of the input
images (section 7.2).

This approach usually works quite well for rocky terrain but may fail for snowy landscapes, whose only
features may be small-scale grooves or ridges sculpted by wind (so-called zastrugi) that disappear at low
resolution.

Stereo Pipeline handles such terrains by using a tool named sparse_disp to create output_prefix -D_sub.tif
at full resolution, yet only at a sparse set of pixels for reasons of speed. This low-resolution disparity is
then re�ned as earlier using a pyramid approach.

Figure 4.4: Example of a di�cult terrain obtained without (left) and with (right) sparse_disp. (In these
DEMs there is very little elevation change, hence the �at appearance.)

This mode can be invoked by passing to stereo the option --corr-seed-mode 3. Also, during pyramid
correlation it is suggested to use somewhat fewer levels than the default --corr-max-levels 5, to again
not subsample the images too much and lose the features.

Here is an example:

> stereo -t dg --corr-seed-mode 3 --corr-max-levels 2 \

left_mapped.tif right_mapped.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

dg/dg srtm_53_07.tif

It is important to note that sparse_disp is written in Python and depends on a variety of binary Python
modules. These modules cannot be distributed with Stereo Pipeline as they depend on the version of
Python installed on your system.

We provide a script which will download and compile the dependencies of this tool for your platform. The
script and instructions are at

23

Chapter 4

https://github.com/NeoGeographyToolkit/BinaryBuilder/tree/master/build_python_modules

After building the sparse_disp dependencies, per the instructions, the path to the Python modules must
be set, for example as:

export ASP_PYTHON_MODULES_PATH=<path to python modules>

4.6 Processing Multi-Spectral Images

In addition to panchromatic (grayscale) imagery, the Digital Globe satellites also produce lower-resolution
multi-spectral (multi-band) images. Stereo Pipeline is designed to process single-band images only. If
invoked on multi-spectral data, it will quietly process the �rst band and ignore the rest. To use one of the
other bands it can be singled out by invoking dg_mosaic (section 4.1) with the --band <num> option. We
have evaluated ASP with Digital Globe's multi-spectral images, but support for it is still experimental. We
recommend using the panchromatic imagery whenever possible.

24

https://github.com/NeoGeographyToolkit/BinaryBuilder/tree/master/build_python_modules

Chapter 5

The Next Steps

This chapter will discuss in more detail ASP's stereo process and other tools available to either pre-process
the input images/cameras or to manipulate stereo's outputs, both in the context of planetary ISIS data
and for Earth imagery. This includes how to (a) customize stereo's settings (b) use point2dem to create
3D terrain models, (c) visualize the results, (d) align the obtained point clouds to another data source, (e)
perform 3D terrain adjustments in respect to a geoid, etc.

5.1 Stereo Pipeline in More Detail

5.1.1 Setting Options in the stereo.default File

The stereo program requires a stereo.default �le that contains settings that a�ect the stereo recon-
struction process. Its contents can be altered for your needs; details are found in appendix B on page 139.
You may �nd it useful to save multiple versions of the stereo.default �le for various processing needs.
If you do this, be sure to specify the desired settings �le by invoking stereo with the -s option. If this
option is not given, the stereo program will search for a �le named stereo.default in the current working
directory. If stereo does not �nd stereo.default in the current working directory and no �le was given
with the -s option, stereo will assume default settings and continue.

An example stereo.default �le is available in the examples/ directory of ASP. The actual �le has a lot
of comments to show you what options and values are possible. Here's a trimmed version of the important
values in that �le.

alignment-method affineepipolar

cost-mode 2

corr-kernel 21 21

subpixel-mode 1

subpixel-kernel 21 21

All these options can be overridden from the command line, as described in section 5.1.4.

Alignment Method

The most important line in stereo.default is the �rst one, specifying the alignment method. For raw
images, alignment is always necessary, as the left and right images are from di�erent perspectives. Several
alignment methods are supported, including affineepipolar and homography (see section B.1 for details).

25

Chapter 5

Alternatively, stereo can be performed with map-projected images (section 5.1.6). In e�ect we take a smooth
low-resolution terrain and map both the left and right raw images onto that terrain. This automatically
brings both images into the same perspective, and as such, for map-projected images the alignment method
is always set to none.

Correlation Parameters

The second and third lines in stereo.default de�ne what correlation metric (normalized cross correlation)
we'll be using and how big the template or kernel size should be (21 pixels square). A pixel in the left image
will be matched to a pixel in the right image by comparing the windows of this size centered at them.

Making the kernel sizes smaller, such as 15 × 15, or even 11 × 11, may improve results on more complex
features, such as steep cli�s, at the expense of perhaps introducing more false matches or noise.

Subpixel Re�nement Parameters

A highly critical parameter in ASP is the value of subpixel-mode, on the fourth line. When set to 1,
stereo performs parabola subpixel re�nement, which is very fast but not very accurate. When set to 2, it
produces very accurate results, but it is about an order of magnitude slower. When set to 3, the accuracy
and speed will be somewhere in between the other methods.

The �fth line sets the kernel size to use during subpixel re�nement (also 21 pixels square).

Search Range Determination

Using these settings alone, ASP will attempt to work out the minimum and maximum disparity it will
search for automatically. However if you wish to, you can explicitly set the extent of the search range by
adding the option:

corr-search -80 -2 20 2

More details about this option and the inner workings of stereo correlation can be found in chapter 7.

5.1.2 Performing Stereo Correlation

As already mentioned, the stereo program can be invoked for ISIS images as

ISIS 3> stereo left_image.cub right_image.cub \

-s stereo.default results/output

For Digital Globe imagery the cameras need to be speci�ed separately:

> stereo left.tif right.tif left.xml right.xml \

-s stereo.default results/output

As stated in section 3.1, the string results/output is arbitrary, and in this case we will simply make all
outputs go to the results directory.

When stereo �nishes, it will have produced a point cloud image. Section 5.2 describes how to convert it
to a digital elevation model (DEM) or other formats.

The stereo command can also take multiple input images, performing multi-view stereo (section 5.1.7).

26

The Next Steps

Figure 5.1: These are the four viewable .tif
�les created by the stereo program. On
the left are the two aligned, pre-processed
images: (results/output-L.tif and
results/output-R.tif). The next two are
mask images (results/output-lMask.tif
and results/output-rMask.tif), which
indicate which pixels in the aligned images
are good to use in stereo correlation. The
image on the right is the �Good Pixel map�,
(results/output-GoodPixelMap.tif),
which indicates (in gray) which were suc-
cessfully matched with the correlator, and
(in red) those that were not matched.

5.1.3 Running the GUI Frontend

The stereo_gui program is a GUI frontend to stereo. It is invoked with the same options as stereo. It
displays the input images, and makes it possible to zoom in and select smaller regions to run stereo on.
The GUI is described in section A.2.

5.1.4 Specifying Settings on the Command Line

All the settings given via the stereo.default �le can be over-ridden from the command line. Just add
a double hyphen (--) in front the option's name and then �ll out the option just as you would in the
con�guration �le. For options in the stereo.default �le that take multiple numbers, they must be
separated by spaces (like `corr-kernel 25 25') on the command line. Here is an example in which we
override the search range and subpixel mode from the command line.

ISIS 3> stereo E0201461.map.cub M0100115.map.cub \

-s stereo.map --corr-search -70 -4 40 4 \

--subpixel-mode 0 results/output

5.1.5 Stereo on Multiple Machines

If the input images are really large it may desirable to distribute the work over several computing nodes.
ASP provides a tool named parallel_stereo for that purpose. Its usage is described in section A.3.

5.1.6 Running Stereo with Map-projected Images

The way stereo correlation works is by matching a neighborhood of each pixel in the left image to a similar
neighborhood in the right image. This matching process can fail or become unreliable if the two images
are too di�erent, which can happen for example if the perspectives of the two cameras are very di�erent or
the underlying terrain has steep portions. This will result in ASP producing terrains with noise or missing
data.

27

Chapter 5

ASP can mitigate this by map-projecting the left and right images onto some pre-existing low-resolution
smooth terrain model without holes, and using the output images to do stereo. In e�ect, this makes the
images much more similar and more likely for stereo correlation to succeed.

In this mode, ASP does not create a terrain model from scratch, but rather uses an existing terrain model
as an initial guess, and improves on it.

For Earth, an existing terrain model can be, for example, NASA SRTM, GMTED2010, USGS's NED data,
or NGA's DTED data. There exist pre-made terrain models for other planets as well, for example the Moon
LRO LOLA global DEM and the Mars MGS MOLA DEM.

Alternatively, a low-resolution smooth DEM can be obtained by running ASP itself as described in previous
sections. In such a run, subpixel mode may be set to parabola (subpixel-mode 1) for speed. To make it
su�ciently coarse and smooth, the resolution can be set to about 40 times coarser than either the default
point2dem resolution or the resolution of the input images. If the resulting DEM turns out to be noisy or
have holes, one could change in point2dem the search radius factor, use hole-�lling, invoke more aggressive
outlier removal, and erode pixels at the boundary (those tend to be less reliable). Alternatively, holes can
be �lled with dem_mosaic.

The tool used for map-projecting the images is called mapproject (section A.10). It is very important
to specify correctly the output resolution (the --tr option for mapproject) when creating map-projected
images. For example, if the input images are about 1 meter/pixel, the same number should be used in
mapproject (if the desired projection is in degrees, this value should be converted to degrees). If the
output resolution is not correct, there will be artifacts in the stereo results.

Some experimentation on a small area may be necessary to obtain the best results.

Example for ISIS images

In this example we illustrate how to run stereo with map-projected images for ISIS data. We start
with LRO NAC Lunar images M1121224102LE and M1121209902LE from ASU's LRO NAC web site,
http://lroc.sese.asu.edu/. We convert them to ISIS cubes using the ISIS program lronac2isis, then we
use the ISIS tools spiceinit, lronaccal, and lrnonacecho to update the SPICE kernels and to do radio-
metric and echo correction. We name the two obtained .cub �les left.cub and right.cub.

Here we decided to run ASP to create the low-resolution DEM needed for map-projection, rather than get
them from an external source. For speed, we process just a small portion of the images:

parallel_stereo left.cub right.cub \

--left-image-crop-win 1984 11602 4000 5000 \

--right-image-crop-win 3111 11027 4000 5000 \

--job-size-w 1024 --job-size-h 1024 \

--subpixel-mode 1 \

run_nomap/run

The input images have resolution of about 1 meter, or 3.3 × 10−5 degrees on the Moon. We create the
low-resolution DEM using a resolution 40 times as coarse, so we use a grid size of 0.0013 degrees (we use
degrees since the default point2dem projection invoked here is longlat).

point2dem -r moon --nodata-value -32768 --tr 0.0013 run_nomap/run-PC.tif

As mentioned earlier, some tweaks to the parameters used by point2dem may be necessary for this low-
resolution DEM to be smooth enough and with no holes.

28

The Next Steps

Figure 5.2: A DEM obtained using plain stereo (left) and stereo with map-projected images (right). Their
quality will be comparable for relatively �at terrain and the second will be much better for rugged terrain.
The right image has some artifacts, but those are limited to areas close to the boundary.

Next, we map-project the images onto this DEM, using the original resolution of 3.3× 10−5 degrees.

mapproject --tr 0.000033 run_nomap/run-DEM.tif left.cub left_proj.tif \

--t_projwin 3.6175120 25.5669989 3.6653695 25.4952127

mapproject --tr 0.000033 run_nomap/run-DEM.tif right.cub right_proj.tif \

--t_projwin 3.6175120 25.5669989 3.6653695 25.4952127

Notice that we restricted the area of computation using --t_projwin to again make the process faster.

Next, we do stereo with these map-projected images.

parallel_stereo --job-size-w 1024 --job-size-h 1024 \

--subpixel-mode 3 \

left_proj.tif right_proj.tif left.cub right.cub \

run_map/run run_nomap/run-DEM.tif

Notice that even though we use map-projected images, we still speci�ed the original images as the third
and fourth arguments. That because we need the camera information from those �les. The �fth argument
is the output pre�x, while the sixth is the low-resolution DEM we used for map-projection. We have used
here --subpixel-mode 3 as this will be the �nal point cloud and we want the increased accuracy.

Lastly, we create a DEM at 1 meter resolution:

29

Chapter 5

point2dem -r moon --nodata-value -32768 --tr 0.000033 run_map/run-PC.tif

Note here that we could have used a coarser resolution for the �nal DEM, such as 4 meters/pixel, since we
won't see detail at the level of 1 meter in this DEM, as the stereo process is lossy. This is explained in
more detail in section A.5.2.

In �gure 5.2 we show the e�ect of using map-projected images on accuracy of the �nal DEM.

It is important to note that we could have map-projected the images using the ISIS tool cam2map, as
described in section 3.2.2. The current approach could be preferable since it allows us to choose the DEM
to map-project onto, and it is much faster, since ASP's mapproject uses multiple processes, while cam2map
is restricted to one process and one thread.

Example for Digital Globe Images

In this section we will describe how to run stereo with map-projected images for Digital Globe cameras for
Earth. The same process can be used with very minor modi�cations for any satellite imagery that uses the
the RPC camera model. All that is needed is to replace the stereo session when invoking stereo below
with rpcmaprpc from dgmaprpc.

Unlike the previous section, here we will use an external DEM to map-project onto, rather than creating
our own. We will use a variant of NASA SRTM data with no holes. Other choices have been mentioned
earlier.

It is important to note that ASP expects the input low-resolution DEM to be in reference to a datum
ellipsoid, such as WGS84 or NAD83. If the DEM is in respect to either the EGM96 or NAVD88 geoids,
the ASP tool dem_geoid can be used to convert the DEM to WGS84 or NAD83 (section A.8). (The same
tool can be used to convert back the �nal output ASP DEM to be in reference to a geoid, if desired.)

Not applying this conversion might not properly negate the parallax seen between the two images, though it
will not corrupt the triangulation results. In other words, sometimes one may be able to ignore the vertical
datums on the input but we do not recommend doing that. Also, you should note that the geoheader
attached to those types of �les usually does not describe the vertical datum they used. That can only be
understood by careful reading of your provider's documents.

In this example we use as an input low-resolution DEM the �le srtm_53_07.tif, a 90 meter resolution tile
from the CGIAR-CSI modi�cation of the original NASA SRTM product [9]. The NASA SRTM square for
this example spot in India is N26E080.

Below are the commands for map-projecting the input and then running through stereo. You can use any
projection you like as long as it preserves detail in the imagery. Note that the last parameter in the stereo
call is the input low-resolution DEM. The dataset is the same as the one used in section 4.1.

Commands

mapproject -t rpc --t_srs "+proj=eqc +units=m +datum=WGS84" \

--tr 0.5 srtm_53_07.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

left_mapped.tif

mapproject -t rpc --t_srs "+proj=eqc +units=m +datum=WGS84" \

--tr 0.5 srtm_53_07.tif \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \

30

The Next Steps

Figure 5.3: Example colorized height map and ortho image output.

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

right_mapped.tif

stereo -t dgmaprpc --subpixel-mode 1 --alignment-method none \

left_mapped.tif right_mapped.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

dg/dg srtm_53_07.tif

If the --t_srs option is not speci�ed, it will be read from the low-resolution input DEM.

The complete list of options for mapproject is described in section A.10.

In the stereo command, we have used subpixel-mode 1 which is less accurate but reasonably fast. We
have also used alignment-method none, since the images are map-projected onto the same terrain with
the same resolution, thus no additional alignment is necessary. More details about how to set these and
other stereo parameters can be found in section 5.1.1.

It is important to note here that any Digital Globe camera �le has two models in it, the exact linescan
model (which we name DG), and its RPC approximation. Above, we have used the approximate RPC model
for map-projection, since map-projection is just a pre-processing step to make the images more similar to
each other, this step will be undone during stereo triangulation, and hence using the RPC model is good
enough, while being much faster than the exact DG model. At the stereo stage, we see above that we invoked
the dgmaprpc session, which suggests that we have used the RPC model during map-projection, but we
would like to use the accurate DG model when performing actual triangulation from the cameras to the
ground.

RPC and Pinhole Camera Models

Map-projected images can also be used with RPC and Pinhole camera models. The mapproject command
needs to be invoked with -t rpc and -t pinhole respectively. As earlier, when invoking stereo the the
�rst two arguments should be the map-projected images, followed by the camera models, output pre�x, and
the name of the DEM used for map-projection. The session name passed to stereo should be rpcmaprpc

and pinholemappinhole respectively.

5.1.7 Multi-View Stereo

ASP supports multi-view stereo at the triangulation stage. In this scenario, the �rst image is set as reference,
disparities are computed from it to all the other images, and then joint triangulation is performed [27]. A

31

Chapter 5

single point cloud is generated with one 3D point for each pixel in the �rst image. The inputs to multi-view
stereo and its output point cloud are handled in the same way as for two-view stereo (e.g., inputs can be
map-projected, the output can be converted to a DEM, etc.).

It is suggested that images be bundle-adjusted (section section 8.2) before running multi-view stereo.

Example (for ISIS with three images):

stereo file1.cub file2.cub file3.cub results/run

Example (for Digital Globe data with three map-projected images):

stereo file1.tif file2.tif file3.tif file1.xml file2.xml file3.xml \

results/run input-DEM.tif

The parallel_stereo tool can also be used with multiple images (section A.3).

For a sequence of images, multi-view stereo can be run several times with each image as a reference, and
the obtained point clouds combined into a single DEM using point2dem (section A.5).

The ray intersection error, the fourth band in the point cloud �le, is computed as twice the mean of distances
from the optimally computed intersection point to the individual rays. For two rays, this agrees with the
intersection error for two-view stereo which is de�ned as the minimal distance between rays. For multi-view
stereo this error is much less amenable to interpretation than for two-view stereo, since the number of valid
rays corresponding to a given feature can vary across the image, which results in discontinuities in the
intersection error.

Other ways of combining multiple images

As an alternative to multi-view stereo, point clouds can be generated from multiple stereo pairs, and then
a single DEM can be created with point2dem (section 5.2.2). Or, multiple DEMs can be created, then
combined into a single DEM with dem_mosaic (section A.7).

In both of these approaches, the point clouds could be registered to a trusted dataset using pc_align before
creating a combined terrain model (section 5.2.5).

5.1.8 Diagnosing Problems

Once invoked, stereo proceeds through several stages that are detailed on page 96. Intermediate and �nal
output �les are generated as it goes. See Appendix C, page 147 for a comprehensive listing. Many of these
�les are useful for diagnosing and debugging problems. For example, as Figure 5.1 shows, a quick look at
some of the TIFF �les in the results/ directory provides some insight into the process.

Perhaps the most accessible �le for assessing the quality of your results is the good pixel image,
(results/output-GoodPixelMap.tif). If this �le shows mostly good, gray pixels in the overlap area (the
area that is white in both the results/output-lMask.tif and results/output-rMask.tif �les), then
your results are just �ne. If the good pixel image shows lots of failed data, signi�ed by red pixels in the
overlap area, then you need to go back and tune your stereo.default �le until your results improve. This
might be a good time to make a copy of stereo.default as you tune the parameters to improve the results.

Whenever stereo, point2dem, and other executables are run, they create log �les in given tool's results
directory, containing a copy of the con�guration �le, the command that was run, your system settings, and

32

The Next Steps

tool's console output. This will help track what was performed so that others in the future can recreate
your work.

Another handy debugging tool is the disparitydebug program, which allows you to generate viewable
versions of the intermediate results from the stereo correlation algorithm. disparitydebug converts infor-
mation in the disparity image �les into two TIFF images that contain horizontal and vertical components
of the disparity (i.e. matching o�sets for each pixel in the horizontal and vertical directions). There are ac-
tually three �avors of disparity map: the -D.tif, the -RD.tif, and -F.tif. You can run disparitydebug

on any of them. Each shows the disparity map at the di�erent stages of processing.

> disparitydebug results/output-F.tif

If the output H and V �les from disparitydebug look good, then the point cloud image is most likely ready
for post-processing. You can proceed to make a mesh or a DEM by processing results/output-PC.tif

using the point2mesh or point2dem tools, respectively.

Figure 5.4 shows the outputs of disparitydebug.

If the input images are map-projected (georeferenced) and the alignment method is none, all images output
by stereo are georeferenced as well, such as GoodPixelMap, D_sub, disparity, etc. As such, all these data
can be overlayed in stereo_gui. disparitydebug also preserves any georeference.

Figure 5.4: Disparity images pro-
duced using the disparitydebug

tool. The two images on the left are
the results/output-D-H.tif and
results/output-D-V.tif �les, which
are normalized horizontal and verti-
cal disparity components produced
by the disparity map initialization
phase. The two images on the right
are results/output-F-H.tif and
results/output-F-V.tif, which are the
�nal �ltered, sub-pixel-re�ned disparity
maps that are fed into the Triangulation
phase to build the point cloud image.
Since these MOC images were acquired
by rolling the spacecraft across-track,
most of the disparity that represents
topography is present in the horizontal
disparity map. The vertical disparity
map shows disparity due to �wash-
boarding,� which is not from topography
but from spacecraft movement. Note
however that the horizontal and vertical
disparity images are normalized indepen-
dently. Although both have the same
range of gray values from white to black,
they represent signi�cantly di�erent
absolute ranges of disparity.

33

Chapter 5

5.1.9 Dealing with Long Run-times

If stereo_corr takes unreasonably long, it may have encountered a portion of the image where, due to
noise (such as clouds, shadows, etc.) the determined search range is much larger than what it should be.
The option --corr-timeout integer can be used to limit how long each 1024×1024 pixel tile can take. A
good value here could be 300 (seconds) or more if your terrain is expected to have large height variations.

5.2 Visualizing and Manipulating the Results

When stereo �nishes, it will have produced a point cloud image. At this point, many kinds of data products
can be built from the results/output-PC.tif point cloud �le.

Figure 5.5: The
results/output.osgb

�le displayed in the OSG
Viewer.

5.2.1 Building a 3D Mesh Model

If you wish to see the data in an interactive 3D browser, then you can generate a 3D object �le using the
point2mesh command (page 110). The resulting �le is stored in Open Scene Graph binary format [8]. It
can be viewed with osgviewer (the Open Scene Graph Viewer program, distributed with the binary version
of the Stereo Pipeline). The point2mesh program takes the point cloud �le and the left normalized image
as inputs:

> point2mesh results/output-PC.tif results/output-L.tif

> osgviewer results/output.osgb

The image displayed by osgviewer is shown in �gure 5.5.

When the osgviewer program starts, you may want to toggle the lighting with the `L' key, toggle texturing
with the 'T' key, and toggle wireframe mode with the 'W'. Press '?' to see a variety of other interactive
options.

If you already have a DEM and an ortho image (section 5.2.2), they can be used to build a mesh as well,
in the same way as done above:

> point2mesh results/output-DEM.tif results/output-DRG.tif

5.2.2 Building a Digital Elevation Model and Ortho Image

The point2dem program (page 105) creates a Digital Elevation Model (DEM) from the point cloud �le.

34

The Next Steps

> point2dem results/output-PC.tif

The resulting TIFF �le is map-projected and will contain georeferencing information stored as GeoTIFF
tags.

The tool will infer the datum and projection from the input images, if present. You can explicitly specify a
coordinate system (e.g., mercator, sinusoidal) and a reference spheroid (i.e., calculated for the Moon, Mars,
or Earth). Alternatively, the datum semi-axes can be set or a PROJ.4 string can be passed in.

> point2dem -r mars results/output-PC.tif

The output DEM will be named results/output-DEM.tif. It can be imported into a variety of GIS
platforms. The DEM can be transformed into a hill-shaded image for visualization (section 5.2.8). Both
the DEM itself and its hill-shaded version can be examined in stereo_gui.

The point2dem program can also be used to orthoproject raw satellite imagery onto the DEM. To do this,
invoke point2dem just as before, but add the --orthoimage option and specify the use of the left image
�le as the texture �le to use for the projection:

> point2dem -r mars results/output-PC.tif --orthoimage results/output-L.tif

The texture �le must always be speci�ed after the point cloud �le. See �gure 5.6 on the right for the output
of this command.

If the DEM has holes, which can be inevitable, those holes will also show up in the orthoimage. They can
be �lled in using the option --orthoimage-hole-fill-len with a value passed to it.

The point2dem program is also able to accept output projection options the same way as the tools in GDAL.
Well-known EPSG, IAU2000 projections, and custom PROJ.4 strings can applied with the target spatial
reference set �ag, --t_srs. If the target spatial reference �ag is applied with any of the reference spheroid
options, the reference spheroid option will overwrite the datum de�ned in the target spatial reference set.
The following examples produce the same output.

> point2dem --t_srs IAU2000:49900 results/output-PC.tif

> point2dem --t_srs "+proj=longlat +a=3396190 +b=3376200"

results/output-PC.tif

The point2dem program can be used in many di�erent ways. The complete documentation is in section
A.5.

5.2.3 Orthorecti�cation of an Image From a Di�erent Source

If you have already obtained a DEM, using ASP or some other approach, and have an image and camera
pair which you would like to overlay on top of this terrain, use the mapproject tool (section A.10).

35

Chapter 5

Figure 5.6: The image on
the left is a normalized DEM
(generated using point2dem's
-n option), which shows low
terrain values as black and
high terrain values as white.
The image on the right is
the left input image projected
onto the DEM (created using
the --orthoimage option to
point2dem).

36

The Next Steps

Figure 5.7: Example of using
pc_align to align a DEM ob-
tained using stereo from CTX
images to a set of MOLA
tracks. The MOLA points are
colored by the o�set error ini-
tially (left) and after pc align
was applied (right) to the ter-
rain model. The red dots in-
dicate more than 100 m of er-
ror and blue less than 5 m.
The pc_align algorithm de-
termined that by moving the
terrain model approximately
40 m south, 70 m west, and 175
m vertically, goodness of �t
between MOLA and the CTX
model was increased substan-
tially.

5.2.4 Correcting Camera Positions and Orientations

The bundle_adjust program can be used to adjust the camera positions and orientations before running
stereo. These adjustments only makes the cameras self-consistent. For the adjustments to be absolute, it
is necessary to use bundle_adjust with ground control points. This tool is described in section A.4.

5.2.5 Alignment to Point Clouds From a Di�erent Source

Often the 3D terrain models output by stereo (point clouds and DEMs) can be intrinsically quite accurate
yet their actual position on the planet may be o� by several meters or several kilometers, depending on the
spacecraft. This can result from small errors in the position and orientation of the satellite cameras taking
the pictures.

Such errors can be corrected in advance using bundle adjustment, as described in the previous section.
That requires using ground control points, that may not be easy to collect. Alliteratively, the images and
cameras can be used as they are, and the absolute position of the output point clouds can be corrected in
post-processing. For that, ASP provides a tool named pc_align. It aligns a 3D terrain to a much more
accurately positioned (if potentially sparser) dataset. Such datasets can be made up of GPS measurements
(in the case of Earth), or from laser altimetry instruments on satellites, such as ICESat/GLASS for Earth,
LRO/LOLA on the Moon, and MGS/MOLA on Mars. Under the hood, pc_align uses the Iterative Closest
Point algorithm (ICP) (both the point-to-plane and point-to-point �avors are supported).

The pc_align tool requires another input, an a priori guess for the maximum displacement we expect to
see as result of alignment, i.e., by how much the points are allowed to move when the alignment transform
is applied. If not known, a large (but not unreasonably so) number can be speci�ed. It is used to remove
most of the points in the source (movable) point cloud which have no chance of having a corresponding
point in the reference (�xed) point cloud.

Here is how pc_align can be called (the denser cloud is speci�ed �rst).

> pc_align --max-displacement 200 --datum MOLA \

37

Chapter 5

--save-inv-transformed-reference-points \

--csv-format '1:lon 2:lat 3:radius_m' \

stereo-PC.tif mola.csv

It is important to note here that there are two widely used Mars datums, and if your CSV �le has, unlike
above, the heights relative to a datum, the correct datum name must be speci�ed via --datum. Section
A.5.1 talks in more detail about the Mars datums.

Figure 5.7 shows an example of using pc_align. The complete documentation for this program is in section
A.17.

5.2.6 Creating DEMs Relative to the Geoid/Areoid

The DEMs generated using point2dem are in reference to a datum ellipsoid. If desired, the dem_geoid

program can be used to convert this DEM to be relative to a geoid/areoid on Earth/Mars respectively.
Example usage:

> dem_geoid results/output-DEM.tif

5.2.7 Converting to the LAS Format

If it is desired to use the stereo generated point cloud outside of ASP, it can be converted to the LAS
�le format, which is a public �le format for the interchange of 3-dimensional point cloud data. The tool
point2las can be used for that purpose (section A.16). Example usage:

> point2las --compressed -r Earth results/output-PC.tif

5.2.8 Generating Color Hillshade Maps

Once you have generated a DEM �le, you can use the colormap and hillshade tools to create colorized
and/or shaded relief images.

To create a colorized version of the DEM, you need only specify the DEM �le to use. The colormap is
applied to the full range of the DEM, which is computed automatically. Alternatively you can specify your
own min and max range for the color map.

> colormap results/output-DEM.tif -o hrad-colorized.tif

To create a hillshade of the DEM, specify the DEM �le to use. You can control the azimuth and elevation
of the light source using the -a and -e options.

> hillshade results/output-DEM.tif -o hrad-shaded.tif -e 25 -a 300

To create a colorized version of the shaded relief �le, specify the DEM and the shaded relief �le that should
be used:

> colormap results/output-DEM.tif -s hrad-shaded.tif -o hrad-color-shaded.tif

See �gure 5.8 showing the images obtained with these commands.

The complete documentation for colormap is in section A.22, and for hillshade in section A.23.

38

The Next Steps

5.2.9 Building Overlays for Moon and Mars Mode in Google Earth

Sometimes it may be convenient to see how the DEMs and orthoimages generated by ASP look on top of
existing imagery in Google Earth. ASP provides a tool named image2qtree for that purpose. It creates
multi-resolution image tiles and a metadata tree in KML format that can be loaded into Google Earth from
your local hard drive or streamed from a remote server over the Internet.

The image2qtree program can only be used on 8-bit image �les with georeferencing information (e.g.
grayscale or RGB GeoTIFF images). In this example, it can be used to process

results/output-DEM-normalized.tif, results/output-DRG.tif, hrad-shaded.tif,
hrad-colorized.tif, and hrad-shaded-colorized.tif.

These images were generated respectively by using point2dem with the -n option creating a normalized
DEM, the --orthoimage option to point2dem which projects the left image onto the DEM, and the images
created earlier with colormap.

Here's an example of how to invoke this program.

> image2qtree hrad-shaded-colorized.tif -m kml --draw-order 100

Figure 5.9 shows the obtained KML �les in Google Earth.

The complete documentation is in section A.24.

Figure 5.8: The colorized DEM, the shaded relief image, and the colorized hillshade.

39

Chapter 5

5.2.10 Using DERT to Visualize Terrain Models

The open source Desktop Exploration of Remote Terrain (DERT) software tool can be used to explore
large digital terrain models, like those created by the Ames Stereo Pipeline. For more information, visit
https://github.com/nasa/DERT.

Figure 5.9: The colorized hillshade DEM as a KML overlay.

40

https://github.com/nasa/DERT

Chapter 6

Tips and Tricks

Here we summarize, in one place, some insights in how to get the most from ASP, particularly the highest
quality results in the smallest amount of time.

• Ask for help or if you have questions. We're always glad to share what we know, implement sugges-
tions, and �x issues (section 1.4).

• Use the GUI (section A.2) to get comfortable with ASP on a small region and to tune parameters
(section A.2). A solution speci�c to ISIS imagery is to crop your stereo pair (using the ISIS crop

command) to a small region of interest.

• The highest quality results with ASP can be obtained with map-projected images (section 5.1.6).

• Run stereo on multiple machines (section A.3).

• Improve the quality of the inputs to get better outputs. Bundle-adjustment can be used to �nd out
the camera positions more accurately (section 8.2). CCD artifact correction can be used to remove
artifacts from WorldView images (section 4.3). Jitter correction can be used for Digital Globe imagery
(section 4.4).

• Align the output point cloud to some known absolute reference with pc_align (section 5.2.5).

• Remove noise from the output point cloud. During stereo triangulation, points that are further or
closer than given distances from planet center or left camera center can be removed as outliers (section
B.5). During DEM generation (section A.5), points with large triangulation error can be removed
using --remove-outliers-params. Spikes can be removed with --median-filter-params. Points
close to the boundary, that tend to be less accurate, can be eroded (--erode-length).

• During stereo �ltering, islands can be removed with --erode-max-size.

• Remove noise from the low-resolution disparity (D_sub) that can greatly slow down a run using
--rm-quantile-percentile and --rm-quantile-multiple. Some care is needed with these to not
remove too much information.

• Fill holes in output orthoimages for nicer display (also in DEMs), during DEM and orthoimage gen-
eration with point2dem (section A.5). Holes in an existing DEM can also be �lled using dem_mosaic

(section A.7).

• To get good results if the images lack large-scale features (such as for ice plains) use a di�erent way
to get the low-resolution disparity (section 4.5).

41

Chapter 6

• If a run takes unreasonably long, decreasing the timeout parameter may be in order (section 5.1.9).

• Manually set the search range if the automated approach fails (section 7.2.2).

• To increase speed, the image pair can be subsampled. For ISIS imagery, the ISIS reduce command
can be used, while for Digital Globe data one can invoke the dg_mosaic tool (section A.9, though
note that this tool may introduce aliasing). With subsampling, you are trading resolution for speed,
so this probably only makes sense for debugging or �previewing� 3D terrain. That said, subsampling
will tend to increase the signal to noise ratio, so it may also be helpful for obtaining 3D terrain out
of noisy, low quality images.

• Photometric calibration can be used to improve the input images and hence get higher quality stereo
results.

• Shape-from-shading (chapter 10) can be used to further increase the level of detail of a DEM obtained
from stereo, though this is a computationally expensive process and its results are not easy to validate.

We'll be happy to add here more suggestions from community's accumulated wisdom on using ASP.

42

Part II

The Stereo Pipeline in Depth

43

Chapter 7

Stereo Correlation

In this chapter we will dive much deeper into understanding the core algorithms in the Stereo Pipeline. We
start with an overview of the �ve stages of stereo reconstruction. Then we move into an in-depth discussion
and exposition of the various correlation algorithms.

The goal of this chapter is to build an intuition for the stereo correlation process. This will help users to
identify unusual results in their DEMs and hopefully eliminate them by tuning various parameters in the
stereo.default �le (appendix B). For scientists and engineers who are using DEMs produced with the
Stereo Pipeline, this chapter may help to answer the question, �What is the Stereo Pipeline doing to the
raw data to produce this DEM?�

A related question that is commonly asked is, �How accurate is a DEM produced by the Stereo Pipeline?�
This chapter does not yet address matters of accuracy and error, however we have several e�orts underway
to quantify the accuracy of Stereo Pipeline-derived DEMs, and will be publishing more information about
that shortly. Stay tuned.

The entire stereo correlation process, from raw input images to a point cloud or DEM, can be viewed as a
multistage pipeline as depicted in Figure 7.1, and detailed in the following sections.

7.1 Pre-Processing

The �rst optional (but recommended) step in the process is least squares Bundle Adjustment, which is
described in detail in Chapter 8.

Next, the left and right images are roughly aligned using one of the four methods: (1) a homography
transform of the right image based on automated tie-point measurements, (2) an a�ne epipolar transform
of both the left and right images (also based on tie-point measurements as earlier), the e�ect of which
is equivalent to rotating the original cameras which took the pictures, (3) a 3D rotation that achieves
epipolar recti�cation (only implemented for Pinhole sessions for missions like MER or K10 � see sections
11.5 and 11.6) or (4) map-projection of both the left and right images using the ISIS cam2map command
or through the more general mapproject tool that works for any cameras supported by ASP (see section
5.1.6 for the latter). The �rst three options can be applied automatically by the Stereo Pipeline when
the alignment-method variable in the stereo.default �le is set to affineepipolar, homography, or
epipolar, respectively.

The latter option, running cam2map, cam2map4stereo.py, or mapproject must be carried out by the user
prior to invoking the stereo command. Map-projecting the images using ISIS eliminates any unusual
distortion in the image due to the unusual camera acquisition modes (e.g. pitching �ROTO� maneuvers
during image acquisition for MOC, or highly elliptical orbits and changing line exposure times for the High

45

Chapter 7

“Left” Image “Right” Image

Registration Adjusted Ephemeris
or Automated
Interest Points

Disparity Map Initialization

Outlier Rejection / Hole Filling
Final Disparity Map

<output>-F.exr

Triangulation

Mesh Generation

Pre-processing

Bundle
Adjustment

stereo

Sub-Pixel Refinement
Sub-pixel Disparity Map

<output>-R.exr

Approx. Disparity Map
<output>-D.exr

Point Cloud Image
<output>-PC.tif

DEM Generation
3D Mesh

<output>.ive

Digital Elevation Model
<output>-DEM.tif

point2dem point2mesh

isis_adjust

Figure 7.1: Flow of data through the Stereo Pipeline.

Resolution Stereo Camera, HRSC). It also eliminates some of the perspective di�erences in the image
pair that are due to large terrain features by taking the existing low-resolution terrain model into account
(e.g., the Mars Orbiter Laser Altimeter, MOLA; Lunar Orbiter Laser Altimeter, LOLA; National Elevation
Dataset, NED; or Uni�ed Lunar Coordinate Network, ULCN, 2005 models).

In essence, map-projecting the images results in a pair of very closely matched images that are as close to
ideal as possible given existing information. This leaves only small perspective di�erences in the images,
which are exactly the features that the stereo correlation process is designed to detect.

For this reason, we recommend map-projection for pre-alignment of most stereo pairs. Its only cost is
longer triangulation times as more math must be applied to work back through the transforms applied to
the images. In either case, the pre-alignment step is essential for performance because it ensures that the
disparity search space is bounded to a known area. In both cases, the e�ects of pre-alignment are taken
into account later in the process during triangulation, so you do not need to worry that pre-alignment will
compromise the geometric integrity of your DEM.

In some cases the pre-processing step may also normalize the pixel values in the left and right images to
bring them into the same dynamic range. Various options in the stereo.default �le a�ect whether or how
normalization is carried out, including individually-normalize and force-use-entire-range. Although
the defaults work in most cases, the use of these normalization steps can vary from data set to data set, so
we recommend you refer to the examples in Chapter 11 to see if these are necessary in your use case.

46

Stereo Correlation

Finally, pre-processing can perform some �ltering of the input images (as determined by
prefilter-mode) to reduce noise and extract edges in the images. When active, these �lters apply a kernel
with a sigma of prefilter-kernel-width pixels that can improve results for noisy images (prefilter-mode
must be chosen carefully in conjunction with cost-mode, see Appendix B). The pre-processing modes that
extract image edges are useful for stereo pairs that do not have the same lighting conditions, contrast, and
absolute brightness [25]. We recommend that you use the defaults for these parameters to start with, and
then experiment only if your results are sub-optimal.

7.2 Disparity Map Initialization

Correlation is the process at the heart of the Stereo Pipeline. It is a collection of algorithms that compute
correspondences between pixels in the left image and pixels in the right image. The map of these corre-
spondences is called a disparity map. You can think of a disparity map as an image whose pixel locations
correspond to the pixel (u, v) in the left image, and whose pixel values contain the horizontal and vertical
o�sets (du, dv) to the matching pixel in the right image, which is (u+ du, v + dv).

The correlation process attempts to �nd a match for every pixel in the left image. The only pixels skipped
are those marked invalid in the mask images. For large images (e.g. from HiRISE, Lunar Reconnaissance
Orbiter Camera, LROC, or WorldView), this is very expensive computationally, so the correlation process
is split into two stages. The disparity map initialization step computes approximate correspondences using
a pyramid-based search that is highly optimized for speed, but trades resolution for speed. The results of
disparity map initialization are integer-valued disparity estimates. The sub-pixel re�nement step takes these
integer estimates as initial conditions for an iterative optimization and re�nes them using the algorithm
discussed in the next section.

We employ several optimizations to accelerate disparity map initialization: (1) a box �lter-like accumulator
that reduces duplicate operations during correlation [29]; (2) a coarse-to-�ne pyramid based approach where
disparities are estimated using low-resolution images, and then successively re�ned at higher resolutions;
and (3) partitioning of the disparity search space into rectangular sub-regions with similar values of disparity
determined in the previous lower resolution level of the pyramid [29].

Naive correlation itself is carried out by moving a small, rectangular template window from the from left
image over the speci�ed search region of the right image, as in Figure 7.2. The �best� match is determined
by applying a cost function that compares the two windows. The location at which the window evaluates to
the lowest cost compared to all the other search locations is reported as the disparity value. The cost-mode
variable allows you to choose one of three cost functions, though we recommend normalized cross correlation
[20], since it is most robust to slight lighting and contrast variations between a pair of images. Try the
others if you need more speed at the cost of quality.

Our implementation of pyramid correlation is a little unique in that it is actually split into two levels
of pyramid searching. There is a output_prefix -D_sub.tif disparity image that is computed from the
greatly reduced input images *-L_sub.tif and output_prefix -R_sub.tif. Those �sub� images have their
size chosen so that their area is around 2.25 mega pixels, a size that is easily viewed on the screen unlike
the raw source imagery. The low-resolution disparity image then de�nes the per thread search range of the
higher resolution disparity, output_prefix -D.tif.

This solution is imperfect but comes from our model of multi-threaded processing. ASP processes individual
tiles of the output disparity in parallel. The smaller the tiles, the easier it is to distribute evenly among
the CPU cores. The size of the tile unfortunately limits the max number of pyramid levels we can process.
We've struck a balance where every 1024 by 1024 pixel area is processed individually in a tile. This practice
allows only 5 levels of pyramid processing. With the addition of the second tier of pyramid searching with
output_prefix -D_sub.tif, we are allowed to process beyond that limitation.

47

Chapter 7

Figure 7.2: The correlation algorithm in disparity map initialization uses a sliding template window from
the left image to �nd the best match in the right image. The size of the template window can be adjusted
using the H_KERN and V_KERN parameters in the stereo.default �le, and the search range can be adjusted
using the {H,V}_CORR_{MIN/MAX} parameters.

Any large failure in the low-resolution disparity image will be detrimental to the performance of the higher
resolution disparity. In the event that the low-resolution disparity is completely unhelpful, it can be
skipped by adding corr-seed-mode 0 in the stereo.default �le and using a manual search range (sec-
tion 7.2.2). This should only be considered in cases where the texture in an image is completely lost
when subsampled. An example would be satellite imagery of fresh snow in the Arctic. Alternatively,
output_prefix -D_sub.tif can be computed at a sparse set of pixels at full resolution, as described in
section 4.5.

An alternative to computing output_prefix -D.tif from sub-sampled images (corr-seed-mode 1) or
skipping it altogether (corr-seed-mode 0), is to compute it from a lower-resolution DEM of the area
(corr-seed-mode 2). In this situation, the low-resolution DEM needs to be speci�ed together with its
estimated error. See section B.2 for more detailed information as to how to specify these options. In our
experiments, if the input DEM has a resolution of 1 km, a good value for the DEM error is about 10 m, or
higher if the terrain is very variable.

7.2.1 Debugging Disparity Map Initialization

Never will all pixels be successfully matched during stereo matching. Though a good chunk of the image
should be correctly processed. If you see large areas where matching failed, this could be due to a variety
of reasons:

48

Stereo Correlation

Figure 7.3: The e�ect of increasing the correlation kernel size from 35 (left) to 75 (right). This location is
covered in snow and several regions lack texture for the correlator to use but a large kernel increases the
chances of �nding useful texture for a given pixel.

• In regions where the images do not overlap, there should be no valid matches in the disparity map.

• Match quality may be poor in regions of the images that have di�erent lighting conditions, contrast,
or specular properties of the surface.

• Areas that have image content with very little texture or extremely low contrast may have an insuf-
�cient signal to noise ratio, and will be rejected by the correlator.

• Areas that are highly distorted due to di�erent image perspective, such as crater and canyon walls,
may exhibit poor matching performance. This could also be due to failure of the preprocessing step
in aligning the images. The correlator can not match images that are rotated di�erently from each
other or have di�erent scale/resolution. Mapprojection is used to at least partially recti�y these issues
(section 5.1.6).

Bad matches, often called �blunders� or �artifacts� are also common, and can happen for many of the same
reasons listed above. The Stereo Pipeline does its best to automatically detect and eliminate these blunders,
but the e�ectiveness of these outlier rejection strategies does vary depending on the quality of the input
imagery.

When tuning up your stereo.default �le, you will �nd that it is very helpful to look at the raw output of
the disparity map initialization step. This can be done using the disparitydebug tool, which converts the
output_prefix -D.tif �le into a pair of normal images that contain the horizontal and vertical components
of disparity. You can open these in a standard image viewing application and see immediately which pixels
were matched successfully, and which were not. Stereo matching blunders are usually also obvious when
inspecting these images. With a good intuition for the e�ects of various stereo.default parameters and
a good intuition for reading the output of disparitydebug, it is possible to quickly identify and address
most problems.

If you are seeing too many holes in your disparity images, one option that may give good results is to
increase the size of the correlation kernel used by stereo_corr with the �corr-kernel option. Increasing
the kernel size will increase the processing time but should help �ll in regions of the image where no match
was found.

49

Chapter 7

Figure 7.4: The e�ect of using the rm-quantile �ltering option in stereo_corr. In the left image there
are a series of high disparity "islands" at the bottom of the image. In the right image quantile �ltering has
removed those islands while leaving the rest of the image intact.

7.2.2 Search Range Determination

In some circumstances, the low-resolution disparity D_sub.tif may fail to get computed, or it may be
inaccurate. This can happen for example if only very small features are present in the original images, and
they disappear during the resampling that is necessary to obtain D_sub.tif. In this case, it is possible
to set corr-seed-mode to 0, and manually set a search range to use for full-resolution correlation via the
parameter corr-search. In stereo.default this parameter's entry will look like:

corr-search -80 -2 20 2

The exact values to use with this option you'll have to discover yourself. The numbers right of corr-search
represent the horizontal minimum boundary, vertical minimum boundary, horizontal maximum boundary,
and �nally the horizontal maximum boundary within which we will search for the disparity during correla-
tion.

It can be tricky to select a good search range for the stereo.default �le. That's why the best way is to
let stereo perform an automated guess for the search range. If you �nd that you can do a better estimate
of the search range, take look at the intermediate disparity images using the disparitydebug program to
�gure out which search directions can be expanded or contracted. The output images will clearly show
good data or bad data depending on whether the search range is correct.

The worst case scenario is to determine the search range manually. For example, for ISIS images, both
images could be opened in qview and the coordinates of points that can be matched visually can be
compared. Subtract line,sample locations in the �rst image from the coordinates of the same feature in the
second image, and this will yield o�sets that can be used in the search range. Make several of these o�set
measurements and use them to de�ne a line,sample bounding box, then expand this by 50% and use it for
corr-search. This will produce good results in most images.

Also, if you are using an alignment option, you'll instead want to make those disparity measurements
against the written L.tif and R.tif �les (see chapter C) instead of the original input �les.

50

Stereo Correlation

7.2.3 Local Homography

Correlation works by decomposing the left image into tiles, and for each pixel in each tile �nding the
best-matching pixel in the right image.

Depending on user's choices, by this stage either the left or the right image (or both) may already be
transformed so that they are very similar, making the matching process more likely to succeed.

Whether that is the case or not, Stereo Pipeline can estimate, based on the low-resolution disparity
output_prefix -D_sub.tif, a local homography transform for every left image tile, which, when applied
to the right image, improves the similarity of the right image to the current left image tile. This option can
be turned on with the �ag use-local-homography.

This local homography transform comes in most useful when a global homography transform could not be
applied (for example, if interest point matching failed). The input low-resolution disparity can be computed
in several ways, as described earlier in the section.

7.3 Sub-pixel Re�nement

Once disparity map initialization is complete, every pixel in the disparity map will either have an estimated
disparity value, or it will be marked as invalid. All valid pixels are then adjusted in the sub-pixel re�nement
stage based on the subpixel-mode setting.

The �rst mode is parabola-�tting sub-pixel re�nement (subpixel-mode 1). This technique �ts a 2D
parabola to points on the correlation cost surface in an 8-connected neighborhood around the cost value
that was the �best� as measured during disparity map initialization. The parabola's minimum can then be
computed analytically and taken as as the new sub-pixel disparity value.

This method is easy to implement and extremely fast to compute, but it exhibits a problem known as
pixel-locking: the sub-pixel disparities tend toward their integer estimates and can create noticeable �stair
steps� on surfaces that should be smooth [28, 30]. See for example Figure 7.5(b). Furthermore, the parabola
subpixel mode is not capable of re�ning a disparity estimate by more than one pixel, so although it produces
smooth disparity maps, these results are not much more accurate than the results that come out of the
disparity map initialization in the �rst place. However, the speed of this method makes it very useful as
a �draft� mode for quickly generating a DEM for visualization (i.e. non-scienti�c) purposes. It is also
bene�cial in the event that a user will simply downsample their DEM after generation in Stereo Pipeline.

For high quality results, we recommend subpixel-mode 2: the Bayes EM weighted a�ne adaptive window
correlator. This advanced method produces extremely high quality stereo matches that exhibit a high
degree of immunity to image noise. For example Apollo Metric Camera images are a�ected by two types of
noise inherent to the scanning process: (1) the presence of �lm grain and (2) dust and lint particles present
on the �lm or scanner. The former gives rise to noise in the DEM values that wash out real features, and
the latter causes incorrect matches or hard to detect blemishes in the DEM. Attenuating the e�ect of these
scanning artifacts while simultaneously re�ning the integer disparity map to sub-pixel accuracy has become
a critical goal of our system, and is necessary for processing real-world data sets such as the Apollo Metric
Camera data.

The Bayes EM subpixel correlator also features a deformable template window from the left image that
can be rotated, scaled, and translated as it zeros in on the correct match in the right image. This adaptive
window is essential for computing accurate matches on crater or canyon walls, and on other areas with
signi�cant perspective distortion due to foreshortening.

This a�ne-adaptive behavior is based on the Lucas-Kanade template tracking algorithm, a classic algorithm
in the �eld of computer vision [3]. We have extended this technique; developing a Bayesian model that

51

Chapter 7

(a) Left Image (b) Parabola Subpixel Mode (c) Bayes EM Subpixel Mode

(d) Right Image (e) Parabola Hillshade (f) Bayes EM Hillshade

Figure 7.5: Left: Input images. Center: results using the parabola draft subpixel mode (subpixel-mode =

1). Right: results using the Bayes EM high quality subpixel mode (subpixel-mode = 2).

treats the Lucas-Kanade parameters as random variables in an Expectation Maximization (EM) framework.
This statistical model also includes a Gaussian mixture component to model image noise that is the basis
for the robustness of our algorithm. We will not go into depth on our approach here, but we encourage
interested readers to read our papers on the topic [24, 5].

However we do note that, like the computations in the disparity map initialization stage, we adopt a multi-
scale approach for sub-pixel re�nement. At each level of the pyramid, the algorithm is initialized with the
disparity determined in the previous lower resolution level of the pyramid, thereby allowing the subpixel
algorithm to shift the results of the disparity initialization stage by many pixels if a better match can
be found using the a�ne, noise-adapted window. Hence, this sub-pixel algorithm is able to signi�cantly
improve upon the results to yield a high quality, high resolution result.

Another option when run time is important is subpixel-mode 3: the simple a�ne correlator. This is essen-
tially the Bayes EM mode with the noise correction features removed in order to decrease the required run
time. In data sets with little noise this mode can yield results similar to Bayes EM mode in approximately
one �fth the time.

7.4 Triangulation

When running an ISIS session, the Stereo Pipeline uses geometric camera models available in ISIS [2].
These highly accurate models are customized for each instrument that ISIS supports. Each ISIS �cube�

52

Stereo Correlation

�le contains all of the information that is required by the Stereo Pipeline to �nd and use the appropriate
camera model for that observation.

Other sessions such as DG (Digital Globe) or Pinhole, require that their camera model be provided as
additional arguments to the stereo command. Those camera models come in the form of an XML document
for DG and as *.pinhole, *.tsai, *.cahv, *.cahvor for Pinhole sessions. Those �les must be the third
and forth arguments or immediately follow after the 2 input images for stereo.

(a) Framing Camera Model (b) Pushbroom Camera Model

Figure 7.6: Most remote sensing cameras fall into two generic categories based on their basic geometry.
Framing cameras (left) capture an instantaneous two-dimensional image. Linescan cameras (right) capture
images one scan line at a time, building up an image over the course of several seconds as the satellite
moves through the sky.

ISIS camera models account for all aspects of camera geometry, including both intrinsic (i.e. focal length,
pixel size, and lens distortion) and extrinsic (e.g. camera position and orientation) camera parameters.
Taken together, these parameters are su�cient to �forward project� a 3D point in the world onto the image
plane of the sensor. It is also possible to �back project� from the camera's center of projection through a
pixel corresponding to the original 3D point.

Notice, however, that forward and back projection are not symmetric operations. One camera is su�cient
to �image� a 3D point onto a pixel located on the image plane, but the reverse is not true. Given only a
single camera and a pixel location x = (u, v), that is the image of an unknown 3D point P = (x, y, z), it

Figure 7.7: Once a disparity map has been generated and re�ned, it can be used in combination with the
geometric camera models to compute the locations of 3D points on the surface of Mars. This �gure shows
the position (at the origins of the red, green, and blue vectors) and orientation of the Mars Global Surveyor
at two points in time where it captured images in a stereo pair.

53

Chapter 7

is only possible to determine that P lies somewhere along a ray that emanates from the camera's center of
projection through the pixel location x on the image plane (see Figure 7.6).

Alas, once images are captured, the route from image pixel back to 3D points in the real world is through
back projection, so we must bring more information to bear on the problem of uniquely reconstructing our
3D point. In order to determine P using back projection, we need two cameras that both contain pixel
locations x1 and x2 where P was imaged. Now, we have two rays that converge on a point in 3D space (see
Figure 7.7). The location where they meet must be the original location of P .

In practice, the two rays rarely intersect perfectly because any slight error in the camera position or pointing
information will e�ect the rays' positions as well. Instead, we take the closest point of intersection of the
two rays as the location of point P .

Additionally, the actual distance between the rays at this point is an interesting and important error metric
that measures how self-consistent our two camera models are for this point. You will learn in the next
chapter that this information, when computed and averaged over all reconstructed 3D points, can be a
valuable statistic for determining whether to carry out bundle adjustment. Distance between the two rays
at their closest intersection is recorded in the fourth channel of the point cloud �le, output-prefix -PC.tif.
This information can be brought to the same perspective as the output DEM by using the --error argument
on the point2dem command.

This error in the triangulation, the distance between two rays, is not the true accuracy of the DEM. It is
only another indirect measure of quality. A DEM with high triangulation error is always bad and should
have its images bundle-adjusted. A DEM with low triangulation error is at least self consistent but could
still be bad. A map of the triangulation error should only be interpreted as a relative measurement. Where
small areas are found with high triangulation error came from correlation mistakes and large areas of error
came from camera model inadequacies.

54

Chapter 8

Bundle Adjustment

8.1 Overview

Satellite position and orientation errors have a direct e�ect on the accuracy of digital elevation models
produced by the Stereo Pipeline. If they are not corrected, these uncertainties will result in systematic
errors in the overall position and slope of the DEM. Severe distortions can occur as well, resulting in
twisted or �taco shaped� DEMs, though in most cases these e�ects are quite subtle and hard to detect. In
the worst case, such as with old mission data like Voyager or Apollo, these gross camera misalignments can
inhibit Stereo Pipeline's internal interest point matcher and block auto search range detection.

Errors in camera position and orientation can be corrected using a process called bundle adjustment. Bundle
adjustment is the process of simultaneously adjusting the properties of many cameras and the 3D locations
of the objects they see in order to minimize the error between the estimated, back-projected pixel locations
of the 3D objects and their actual measured locations in the captured images.

This complex process can be boiled down to this simple idea: bundle adjustment ensures that the observa-
tions in multiple images of a single ground feature are self-consistent. If they are not consistent, then the
position and orientation of the cameras as well as the 3D position of the feature must be adjusted until
they are. This optimization is carried out along with thousands (or more) of similar constraints involving
many di�erent features observed in other images. Bundle adjustment is very powerful and versatile: it can
operate on just two overlapping images, or on thousands. It is also a dangerous tool. Careful consideration

Figure 8.1: Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM mosaic from
Apollo 15, Orbit 33, imagery. (a) Prior to bundle adjustment, large discontinuities can exist between
overlapping DEMs made from di�erent images. (b) After bundle adjustment, DEM alignment errors are
minimized and no longer visible.

55

Chapter 8

is required to insure and verify that the solution does represent reality.

Bundle adjustment can also take advantage of ground control points (GCPs), which are 3D locations of
features that are known a priori (often by measuring them by hand in another existing DEM). GCPs can
improve the internal consistency of your DEM or align your DEM to an existing data product. Finally,
even though bundle adjustment calculates the locations of the 3D objects it views, only the �nal properties
of the cameras are recorded for use by the Ames Stereo Pipeline. Those properties can be loaded into the
stereo program which uses its own method for triangulating 3D feature locations.

When using the Stereo Pipeline, bundle adjustment is an optional step between the capture of images
and the creation of DEMs. The bundle adjustment process described below should be completed prior to
running the stereo command.

Although bundle adjustment is not a required step for generating DEMs, it is highly recommended for users
who plan to create DEMs for scienti�c analysis and publication. Incorporating bundle adjustment into the
stereo work �ow not only results in DEMs that are more internally consistent, it is also the correct way to
co-register your DEMs with other existing data sets and geodetic control networks.

At the moment however, Bundle Adjustment does not automatically work against outside DEMs from
sources such as laser altimeters. Hand-picked GCPs are the only way for ASP to register to those types of
sources.

8.2 Bundle adjustment using ASP

Recently, Stereo Pipeline started providing its own bundle adjustment tool, named bundle_adjust. Its
usage is described in section A.4.

Here is an example of using this tool on a couple of Apollo 15 images, and its e�ect on decreasing the stereo
triangulation error.

Running stereo without using bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_noadjust/run

Performing bundle adjustment.

bundle_adjust AS15-M-1134.cub AS15-M-1135.cub -o run_ba/run

Running stereo while using the bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_adjust/run \

--bundle-adjust-prefix run_ba/run

A comparison of the two ways of doing stereo is shown in �gure 8.2.

8.3 Bundle adjustment using ISIS

In what follows we describe how to do bundle adjustment using ISIS's toolchain. It also serves to describe
bundle adjustment in more detail, which is applicable to other bundle adjustment tools as well, including
Stereo Pipeline's own tool.

56

Bundle Adjustment

Figure 8.2: Illustration of the triangulation error map for a pair of images before (left) and after (right)
using Stereo Pipeline's bundle_adjust. Red and black colors suggest higher error.

In bundle adjustment, the position and orientation of each camera station are determined jointly with the
3D position of a set of image tie-points points chosen in the overlapping regions between images. Tie points,
as suggested by the name, tie multiple camera images together. Their physical manifestation would be a
rock or small crater than can be observed across more than one image.

Tie-points are automatically extracted using ISIS's autoseed and pointreg (alternatively one could use a
number of outside methods such as the famous SURF[4]). Creating a collection of tie points, called a control
network, is a three step process. First, a general geographic layout of the points must be decided upon.
This is traditionally just a grid layout that has some spacing that allows for about 20-30 measurements
to be made per image. This shows up in slightly di�erent projected locations in each image due to their
slight misalignments. The second step is to have an automatic registration algorithm try to �nd the same
feature in all images using the prior grid as a starting location. The third step is to manually verify all
measurements visually, checking to insure that each measurement is looking at the same feature.

Bundle Adjustment in ISIS is performed with the jigsaw executable. It generally follows the method
described in [31] and determines the best camera parameters that minimize the projection error given by
ε =

∑
k

∑
j(Ik− I(Cj , Xk))2 where Ik are the tie points on the image plane, Cj are the camera parameters,

andXk are the 3D positions associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward
projection) for a given camera and 3D point. To recap, it projects the 3D point, Xk, into the camera with
parameters Cj . This produces a predicted image location for the 3D point that is compared against the
observed location, Ik. It then reduces this error with the Levenberg-Marquardt algorithm (LMA). Speed
is improved by using sparse methods as described in Hartley and Zisserman [14], Konolige [15], and Chen
et al. [7].

Even though the arithmetic for bundle adjustment sounds clever, there are faults with the base implemen-
tation. Imagine a case where all cameras and 3D points were collapsed into a single point. If you evaluate
the above cost function, you'll �nd that the error is indeed zero. This is not the correct solution if the

57

Chapter 8

images were taken from orbit. Another example is if a translation was applied equally to all 3D points
and camera locations. This again would not a�ect the cost function. This fault comes from bundle adjust-
ment's inability to control the scale and translation of the solution. It will correct the geometric shape of
the problem, yet it cannot guarantee that the solution will have correct scale and translation.

ISIS attempts to �x this problem by adding two additional cost functions to bundle adjustment. First of
which is ε =

∑
j(C

initial
j − Cj)2. This constrains camera parameters to stay relatively close to their initial

values. Second, a small handful of 3D ground control points can be chosen by hand and added to the error
metric as ε =

∑
k(X

gcp
k − Xk)2 to constrain these points to known locations in the planetary coordinate

frame. A physical example of a ground control point could be the location of a lander that has a well known
location. GCPs could also be hand-picked points against a highly regarded and prior existing map such as
the THEMIS Global Mosaic or the LRO-WAC Global Mosaic.

Like other iterative optimization methods, there are several conditions that will cause bundle adjustment
to terminate. When updates to parameters become insigni�cantly small or when the error, ε, becomes
insigni�cantly small, then the algorithm has converged and the result is most likely as good as it will get.
However, the algorithm will also terminate when the number of iterations becomes too large in which case
bundle adjustment may or may not have �nished re�ning the parameters of the cameras.

8.3.1 Tutorial: Processing Mars Orbital Camera Imagery

This tutorial for ISIS's bundle adjustment tools is taken from [22] and [23]. These tools are not a product of
NASA nor the authors of Stereo Pipeline. They were created by USGS and their documentation is available

jicfv∆
jicfu∆

Kc j

K f i

[u f ic j

v f
i
c

j
]

[u f ic j

v f
i
c

j
]

World frame

Camera frame

Image plane

Figure 8.3: A feature observation in bundle adjustment, from Moore et al. [21]

58

Bundle Adjustment

at [6].

What follows is an example of bundle adjustment using two MOC images of Hrad Vallis. We use images
E02/01461 and M01/00115, the same as used in Chapter 3. These images are available from NASA's PDS
(the ISIS mocproc program will operate on either the IMQ or IMG format �les, we use the .imq below in
the example). For reference, the following ISIS commands are how to convert the MOC images to ISIS
cubes.

ISIS 3> mocproc from=e0201461.imq to=e0201461.cub mapping=no

ISIS 3> mocproc from=m0100115.imq to=m0100115.cub mapping=no

Note that the resulting images are not map-projected. Bundle adjustment requires the ability to project
arbitrary 3D points into the camera frame. The process of map-projecting an image dissociates the camera
model from the image. Map-projecting can be perceived as the generation of a new in�nitely large camera
sensor that may be parallel to the surface, a conic shape, or something more complex. That makes it
extremely hard to project a random point into the camera's original model. The math would follow the
transformation from projection into the camera frame, then projected back down to surface that ISIS uses,
then �nally up into the in�nitely large sensor. Jigsaw does not support this and thus does not operate on
map-projected imagery.

Before we can dive into creating our tie-point measurements we must �nish prepping these images. The
following commands will add a vector layer to the cube �le that describes its outline on the globe. It will
also create a data �le that describes the overlapping sections between �les.

ISIS 3> footprintinit from=e0201461.cub

ISIS 3> footprintinit from=m0100115.cub

ISIS 3> echo *cub | xargs -n1 echo > cube.lis

ISIS 3> findimageoverlaps from=cube.lis overlaplist=overlap.lis

At this point, we are ready to start generating our measurements. This is a three step process that requires
de�ning a geographic pattern for the layout of the points on the groups, an automatic registration pass, and
�nally a manual clean up of all measurements. Creating the ground pattern of measurements is performed
with autoseed. It requires a settings �le that de�nes the spacing in meters between measurements. For
this example, write the following text into a autoseed.def �le.

Group = PolygonSeederAlgorithm

Name = Grid

MinimumThickness = 0.01

MinimumArea = 1

XSpacing = 1000

YSpacing = 2000

End_Group

The minimum thickness de�nes the minimum ratio between the sides of the region that can have points
applied to it. A choice of 1 would de�ne a square and anything less de�nes thinner and thinner rectangles.
The minimum area argument de�nes the minimum square meters that must be in an overlap region. The
last two are the spacing in meters between control points. Those values were speci�cally chosen for this
pair so that about 30 measurements would be produced from autoseed. Having more control points just
makes for more work later on in this process. Run autoseed with the following instruction.

59

Chapter 8

Figure 8.4: A visualization of the features laid out by autoseed in qnet. Note that the marks do not cover
the same features between images. This is due to the poor initial spice data for MOC imagery.

ISIS 3> autoseed fromlist=cube.lis overlaplist=overlap.lis \

onet=control.net deffile=autoseed.def networkid=moc \

pointid=???? description=hrad_vallis

The next step is to perform auto registration of these features between the two images using pointreg.
This program also requires a settings �le that describes how to do the automatic search. Copy the text box
below into a autoRegTemplate.def �le.

Object = AutoRegistration

Group = Algorithm

Name = MaximumCorrelation

Tolerance = 0.7

EndGroup

Group = PatternChip

Samples = 21

Lines = 21

MinimumZScore = 1.5

ValidPercent = 80

EndGroup

60

Bundle Adjustment

Group = SearchChip

Samples = 75

Lines = 1000

EndGroup

EndObject

The search chip de�nes the search range for which pointreg will look for matching imagery. The pattern
chip is simply the kernel size of the matching template. The search range is speci�c for this image pair.
The control network result after autoseed had a large vertical o�set in the ball park of 500 px. The large
misalignment dictated the need for the large search in the lines direction. Use qnet to get an idea for what
the pixel shifts look like in your stereo pair to help you decide on a search range. In this example, only one
measurement failed to match automatically. Here are the arguments to use in this example of pointreg.

ISIS 3> pointreg fromlist=cube.lis cnet=control.net \

onet=control_pointreg.net deffile=autoRegTemplate.def

The third step is to manually edit the control and verify the measurements in qnet. Type qnet in the
terminal and then open cube.lis and lastly control_pointreg.net. From the Control Network Navigator
window, click on the �rst point listed as 0001. That opens a third window called the Qnet Tool. That
window will allow you to play a �ip animation that shows alignment of the feature between the two images.
Correcting a measurement is performed by left clicking in the right image, then clicking Save Measure, and
�nally �nishing by clicking Save Point.

In this tutorial, measurement 0025 ended up being incorrect. Your number may vary if you used di�erent
settings than the above or if MOC spice data has improved since this writing. When �nished, go back to
the main Qnet window. Save the �nal control network as control_qnet.net by clicking on File, and then
Save As.

Once the control network is �nished, it is �nally time to start bundle adjustment. Here's what the call to
jigsaw looks like:

ISIS 3> jigsaw fromlist=cube.lis update=yes twist=no radius=yes \

cnet=control_qnet.net onet=control_ba.net

The update option de�nes that we would like to update the camera pointing, if our bundle adjustment
converges. The twist=no says to not solve for the camera rotation about the camera bore. That property
is usually very well known as it is critical for integrating an image with a line-scan camera. The radius=yes
means that the radius of the 3D features can be solved for. Using no will force the points to use height
values from another source, usually LOLA or MOLA.

The above command will spew out a bunch of diagnostic information from every iteration of the optimization
algorithm. The most important feature to look at is the sigma0 value. It represents the mean of pixel
errors in the control network. In our run, the initial error was 1065 px and the �nal solution had an error
of 1.1 px.

Producing a DEM using the newly created camera corrections is the same as covered in the Tutorial on
page 15. When using jigsaw, it modi�es a copy of the spice data that is stored internally to the cube �le.
Thus when we want to create a DEM using the correct camera geometry, no extra information needs to be
given to stereo since it is already contained in the �le. In the event a mistake has been made, spiceinit
will overwrite the spice data inside a cube �le and provide the original uncorrected camera pointing.

ISIS 3> stereo E0201461.cub M0100115.cub bundled/bundled

61

Chapter 8

Figure 8.5: A visualization of the features after manual editing in qnet. Note that the marks now appear
in the same location between images.

62

Chapter 9

Solving for Camera Poses Based on Images

The ASP tool camera_solve o�ers several ways to �nd the true position of frame camera images that do
not come with any attached pose metadata. An overview of the tool and examples are provided in this
chapter. Reference information for this tool can be found in Appendix A.29.

9.1 Camera Solve Overview

The camera_solve tool is implemented as a Python wrapper around two other tools. The �rst of these
is the the THEIA software library, which is used to generate initial camera position estimates in a local
coordinate space. You can learn more about THEIA at http://www.theia-sfm.org/index.html. The
second tool is ASP's own bundle_adjust tool. The second step improves the solution to account for lens
distortion and transforms the solution from local to global coordinates by making use of additional input
data.

Currently the tool only solves for the extrinsic camera parameters and the user must provide intrinsic cam-
era information. You can use the camera_calibrate tool (see Appendix A.28) or other camera calibration
software to solve for intrinsic parameters if you have access to the camera in question. The camera cali-
bration information must be contained in a .tsai pinhole camera model �le and must passed in using the
--calib-file option. You can �nd descriptions of our supported pinhole camera models in Appendix D.

In order to transform the camera models from local to world coordinates, one of three pieces of information
may be used. These sources are listed below and described in more detail in the examples that follow:

• A set of ground control points of the same type used by pc_align. The easiest way to generate these
points is to use the ground control point writer tool available in the stereo-gui tool.

• A set of estimated camera positions (perhaps from a GPS unit) stored in a csv �le.

• A DEM which a local point cloud can be registered to using pc_align. This method can be more
accurate if estimated camera positions are also used. The user must perform alignment to a DEM,
that step is not handled by camera_solve.

Power users can tweak the individual steps that camera_solve goes through to optimize their results. This
primarily involves setting up a custom �ag �le for THEIA and/or passing in settings to bundle_adjust.

63

http://www.theia-sfm.org/index.html

Chapter 9

9.2 Example: Apollo 15 Metric Camera

To demonstrate the ability of the Ames Stereo Pipeline to process a generic frame camera we use images
from the Apollo 15 Metric camera. The calibration information for this camera is available online and we
have accurate digital terrain models we can use to verify our results.

First download a pair of images:

> wget http://apollo.sese.asu.edu/data/metric/AS15/png/AS15-M-0414_MED.png

> wget http://apollo.sese.asu.edu/data/metric/AS15/png/AS15-M-1134_MED.png

Figure 9.1: The two Apollo 15 images.

In order to make the example run faster we use downsampled versions of the original images. The images at
those links have already been downsampled by a factor of 4*sqrt(2) from the original images. This means
that the e�ective pixel size has increased from �ve microns (0.005 millimeters) to 0.028284 millimeters.

The next step is to �ll out the rest of the pinhole camera model information we need. Using the data
sheets available at we can �nd the lens distortion parameters for metric camera. Looking at the ASP lens
distortion models in Appendix D, we see that the description matches ASP's Brown-Conrady model. Using
the example in the appendix we can �ll out the rest of the sensor model �le (metric_model.tsai) so it looks
as follows:

VERSION_3

fu = 76.080

fv = 76.080

cu = 57.246816

cv = 57.246816

u_direction = 1 0 0

v_direction = 0 1 0

w_direction = 0 0 1

C = 0 0 0

R = 1 0 0 0 1 0 0 0 1

64

http://apollo.sese.asu.edu/SUPPORT_DATA/AS15_SIMBAY_SUMMARY.pdf

Solving for Camera Poses Based on Images

pitch = 0.028284

BrownConrady

xp = -0.006

yp = -0.002

k1 = -0.13361854e-5

k2 = 0.52261757e-09

k3 = -0.50728336e-13

p1 = -0.54958195e-06

p2 = -0.46089420e-10

phi = 2.9659070

These parameters use units of millimeters so we have to convert the nominal center point of the images
from 2024 pixels to units of millimeters. Note that for some older images like these the nominal image
center can be checked by looking for some sort of marking around the image borders that indicates where
the center should lie. For these pictures there are black triangles at the center positions and they line up
nicely with the center of the image. Before we try to solve for the camera positions

> undistort_image AS15-M-0414_MED.png metric_model.tsai -o corrected_414.tif

It is di�cult to tell if the distortion model is correct by using this tool but it should be obvious if there
are any gross errors in your camera model �le such as incorrect units or missing parameters. In this case
the tool will fail to run or will produce a signi�cantly distorted image. For certain distortion models the
undistort_image tool may take a long time to run.

If we do not see any obvious problems we can go ahead and run the camera_solve tool:

> camera_solve out/ AS15-M-0414_MED.png AS15-M-1134_MED.png --datum D_MOON \

--calib-file metric_model.tsai

We should get some camera models in the output folder and see a printout of the �nal bundle adjustment
error among the program output information:

Cost:

Initial 1.450385e+01

Final 7.461198e+00

Change 7.042649e+00

We can't generate a DEM with these local camera models but we can run stereo anyways and look at the
intersection error in the fourth band of the PC.tif �le. While there are many speckles in this example
where stereo correlation failed the mean intersection error is low and we don't see any evidence of lens
distortion error.

> stereo AS15-M-0414_MED.png AS15-M-1134_MED.png out/AS15-M-0414_MED.png.final.tsai \

out/AS15-M-1134_MED.png.final.tsai -t pinhole s_local/out --corr-timeout 300 \

--erode-max-size 100

> gdalinfo -stats s_local/out-PC.tif

...

Band 4 Block=256x256 Type=Float32, ColorInterp=Undefined

Minimum=0.000, Maximum=56.845, Mean=0.340, StdDev=3.512

Metadata:

65

Chapter 9

STATISTICS_MAXIMUM=56.844654083252

STATISTICS_MEAN=0.33962282293374

STATISTICS_MINIMUM=0

STATISTICS_STDDEV=3.5124044818554

In order to generate a useful DEM, we need to move our cameras from local coordinates to global coordinates.
The easiest way to do this is to obtain known ground control points (GCPs) which can be identi�ed in
the frame images. This will allow an accurate positioning of the cameras provided that the GCPs and the
camera model parameters are accurate. To create GCPs see the instructions for the stereo_gui tool in
appendix A.2.2. For the moon there are several ways to get DEMs and in this case we generated GCPs
using stereo_gui and a DEM generated from LRONAC images.

After running this command:

> camera_solve out_gcp/ AS15-M-0414_MED.png AS15-M-1134_MED.png --datum D_MOON \

--calib-file metric_model.tsai --gcp-file ground_control_points.gcp

we end up with results that can be compared with the a DEM created from LRONAC images. The stereo
results on the Apollo 15 images leave something to be desired but the DEM they produced has been moved
to the correct location. You can easily visualize the output camera positions using the orbitviz tool
with the �load-camera-solve option as shown below. Green lines between camera positions mean that a
su�cient number of matching interest points were found between those two images.

> stereo AS15-M-0414_MED.png AS15-M-1134_MED.png out_gcp/AS15-M-0414_MED.png.final.tsai \

out_gcp/AS15-M-1134_MED.png.final.tsai -t nadirpinhole s_global/out --corr-timeout 300 \

--erode-max-size 100

> orbitviz -t nadirpinhole -r moon out_gcp --load-camera-solve

ASP also supports the method of initializing the camera_solve tool with estimated camera positions. This
method will not move the cameras to exactly the right location but it should get them fairly close and at
the correct scale, hopefully close enough to be used as-is or to be re�ned using pc_align or some other
method. To use this method, pass additional bundle adjust parameters to camera_solve similar to the
following line:

--bundle-adjust-params '--camera-positions nav.csv \

--csv-format "1:file 12:lat 13:lon 14:height_above_datum" --camera-weight 0.2'

The nav data �le you use must have a column (the "�le" column) containing a string that can be matched
to the input image �les passed to camera_solve. The tool looks for strings that are fully contained inside
one of the image �le names, so for example the �eld value 2009_10_20_0778 would be matched with the
input �le 2009_10_20_0778.JPG.

9.3 Example: IceBridge DMS Camera

The DMS (Digital Mapping System) Camera is a frame camera �own on as part of the NASA IceBridge
program to collect digital terrain imagery of polar and Antarctic terrain. To process this data the steps
are very similar to the steps described above for the Apollo Metric camera but there are some aspects
which are particular to IceBridge. You can download DMS images from ftp://n5eil01u.ecs.nsidc.org/

66

ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/

Solving for Camera Poses Based on Images

(a) orbitviz display (b) KML Screenshot

Figure 9.2: (a) Solved for camera positions plotted using orbitviz. (b) A narrow LRONAC DEM overlaid
on the resulting DEM, both colormapped to the same elevation range.

SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/. A list of the available data types can be found at https:

//nsidc.org/data/icebridge/instr_data_summary.html. This example uses data from the November
5, 2009 �ight over Antarctica. Note that these images are RGB on disk but the three channel are identical
so we can just let ASP use the �rst channel by default. The following camera model (icebridge_model.tsai)
was used:

VERSION_3

fu = 28.429

fv = 28.429

cu = 17.9712

cv = 11.9808

u_direction = 1 0 0

v_direction = 0 1 0

w_direction = 0 0 1

C = 0 0 0

R = 1 0 0 0 1 0 0 0 1

pitch = 0.0064

Photometrix

xp = 0.004

yp = -0.191

k1 = 1.31024e-04

k2 = -2.05354e-07

67

ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/
https://nsidc.org/data/icebridge/instr_data_summary.html
https://nsidc.org/data/icebridge/instr_data_summary.html

Chapter 9

k3 = -5.28558e-011

p1 = 7.2359e-006

p2 = 2.2656e-006

b1 = 0.0

b2 = 0.0

Obtaining ground control points for icy locations on Earth can be particularly di�cult because they are
not well surveyed or because the terrain shifts over time. This may force you to use estimated camera
positions to convert the local camera models into global coordinates. To make this easier for IceBridge data
sets, ASP provides the icebridge_kmz_to_csv tool (see appendix A.30) which extracts a list of estimated
camera positions from the kmz �les available for each IceBridge �ight at http://asapdata.arc.nasa.gov/
dms/missions.html.

Another option which is useful when processing IceBridge data is the --position-filter-dist option for
bundle_adjust. IceBridge data sets contain a large number of images and when processing many at once
you can signi�cantly decrease your processing time by using this option to limit interest-point matching to
image pairs which are actually close enough to overlap. A good way to determine what distance to use is
to load the camera position kmz �le from their website into Google Earth and use the ruler tool to measure
the distance between a pair of frames that are as far apart as you want to match. Commands using these
options may look like this:

icebridge_kmz_to_csv 1000123_DMS_Frame_Events.kmz camera_positions.csv

camera_solve out 2009_11_05_00667.JPG 2009_11_05_00668.JPG \

2009_11_05_00669.JPG 2009_11_05_00670.JPG 2009_11_05_02947.JPG 2009_11_05_02948.JPG \

2009_11_05_02949.JPG 2009_11_05_02950.JPG 2009_11_05_01381.JPG 2009_11_05_01382.JPG \

--datum WGS84 --calib-file icebridge_model.tsai \

--bundle-adjust-params '--camera-positions camera_positions.csv \

--csv-format "1:file 2:lon 3:lat 4:height_above_datum" --position-filter-dist 2000'

orbitviz out --load-camera-solve --hide-labels -r wgs84 -t nadirpinhole

A �nal tip for processing IceBridge data is that Land, Vegetation, and Ice Sensor (LVIS) lidar data available
for some �ights can be used to register DEMs created using DMS imagery. LVIS data can be downloaded at
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE/ILVIS2.001/. The lidar data comes in plain text �les
that pc_align and point2dem can parse using the following option:

--csv-format "5:lat 4:lon 6:height_above_datum"

ASP provides the lvis2kml tool to help visualize the coverage and terrain contained in LVIS �les, see
Appendix A.31 for details. The LVIS lidar coverage is sparse compared to the image coverage and you
will have di�culty getting a good registration unless the region has terrain features such as hills or you
are registering very large point clouds that overlap with the lidar coverage across a wide area. Otherwise
pc_align will simply slide the �at terrain to an incorrect location to produce a low-error �t with the narrow
lidar tracks. This test case was speci�cally chosen to provide strong terrain features to make alignment
more accurate but pc_align still failed to produce a good �t until the lidar point cloud was converted into
a smoothed DEM.

stereo 2009_11_05_02948.JPG 2009_11_05_02949.JPG out/2009_11_05_02948.JPG.final.tsai \

out/2009_11_05_02949.JPG.final.tsai st_run/out -t nadirpinhole

point2dem ILVIS2_AQ2009_1105_R1408_055812.TXT --datum WGS_1984 \

--t_srs "+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs" \

68

http://asapdata.arc.nasa.gov/dms/missions.html
http://asapdata.arc.nasa.gov/dms/missions.html
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE/ILVIS2.001/

Solving for Camera Poses Based on Images

(a) (b)

Figure 9.3: (a) Measuring the distance between estimated frame locations using Google Earth and an
IceBridge kmz �le. The kmz �le is from the IceBridge website with no modi�cations. Using a position
�lter distance of 2000 meters will mostly limit image IP matching in this case to each image's immediate
"neighbors". (b) Display of camera_solve results for ten IceBridge images using orbitviz.

--csv-format "5:lat 4:lon 6:height_above_datum" --tr 30 \

--search-radius-factor 2.0 -o lvis

pc_align --max-displacement 1000 lvis-DEM.tif st_run/out-PC.tif -o align_run/out \

--save-transformed-source-points --datum wgs84 --outlier-ratio 0.55

point2dem align_run/out-trans_source.tif --datum WGS_1984 \

--t_srs "+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs"

colormap align_run_big/out-trans_source-DEM.tif --min 200 --max 1500

colormap lvis-DEM.tif --min 200 --max 1500

image2qtree lvis-DEM_CMAP.tif

image2qtree align_run_big/out-trans_source-DEM_CMAP.tif

69

Chapter 9

Figure 9.4: LVIS lidar DEM overlaid on the ASP created DEM, both colormapped to the same elevation
range. The ASP DEM could be improved but the registration is accurate. Notice how narrow the LVIS
lidar coverage is compared to the �eld of view of the camera.

70

Chapter 10

Shape-from-Shading

ASP provides a tool, named sfs, that can improve the level of detail of DEMs created by ASP or any other
source using shape-from-shading (SfS).

The tool takes as input one or more camera images, a DEM at roughly the same resolution as the images,
and returns a re�ned DEM.

sfs works only with ISIS cub images. It has been tested only for Lunar LRO NAC datasets. As seen later
in the text, it returns reasonable results as far as 85◦ South on the Moon.

Currently, sfs is computationally expensive, and is practical only for DEMs of size up to 1000×1000 pixels.
It can be very sensitive to errors in the position and orientation of the cameras, the accuracy of the initial
DEM, and to the value of the smoothing term used to ensure that the output DEM is not overly noisy.

The sfs program can model position-dependent albedo, di�erent exposure values for each camera, shadows
in the input images, and regions in the DEM occluded from the Sun. It can re�ne the positions and
orientations of the cameras, and supports the Lambertian and Lunar-Lambertian re�ectance models.

The tool works by minimizing the cost function∫ ∫ ∑
k

[Ik(φ)(x, y)− TkA(x, y)Rk(φ)(x, y)]2 + µ
∥∥∇2φ(x, y)

∥∥2
dx dy

Here, Ik(φ)(x, y) is the k-th camera image interpolated at pixels obtained by projecting into the camera 3D
points from the terrain φ(x, y), Tk is the k-th image exposure, A(x, y) is the per-pixel albedo, Rk(φ)(x, y)
is the re�ectance computed from the terrain for k-th image,

∥∥∇2φ
∥∥2

is the sum of squares all second-order
partial derivatives of φ, and µ > 0 is a smoothing term. We use either the regular Lambertian re�ectance
model, or the Lunar-Lambertian model [19].

Below we show two examples of running sfs, �rst for one image, and then for multiple images with bundle-
adjustment and modeling the shadow threshold.

10.1 Running sfs at 1 meter/pixel using a single image

In both this and the next section we will work with LRO NAC images taken close to the Lunar South Pole, at
85◦ of latitude (the tool was tested on equatorial regions as well). We obtain the images from http://wms.

lroc.asu.edu/lroc/search. We will use four images, M139939938LE, M139946735RE, M173004270LE,
and M122270273LE.

We �rst retrieve the data sets, convert them to ISIS cubes, initialize the SPICE kernels, and perform
radiometric calibration and echo correction. Here are the steps, illustrated on the �rst image:

71

http://wms.lroc.asu.edu/lroc/search
http://wms.lroc.asu.edu/lroc/search

Chapter 10

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/\

LROLRC_0005/DATA/SCI/2010267/NAC/M139939938LE.IMG

lronac2isis from = M139939938LE.IMG to = M139939938LE.cub

spiceinit from = M139939938LE.cub

lronaccal from = M139939938LE.cub to = M139939938LE.cal.cub

lronacecho from = M139939938LE.cal.cub to = M139939938LE.cal.echo.cub

We rename, for simplicity, the obtained four processed datasets to A.cub, B.cub, C.cub, and D.cub.

The �rst step is to run stereo to create an initial guess DEM. We picked for this the �rst two of these images.
These form a stereo pair, that is, they have reasonable baseline and su�ciently close times of acquisition
and hence very similar illuminations. These conditions are necessary to obtain a good stereo result.

parallel_stereo --job-size-w 1024 --job-size-h 1024 A.cub B.cub \

--left-image-crop-win 0 7998 2728 2696 \

--right-image-crop-win 0 9377 2733 2505 \

--threads 16 --corr-seed-mode 1 --subpixel-mode 3 \

run_full1/run

Next we create a DEM at 1 meter/pixel, which is about the resolution of the input images. We use the
stereographic projection since this dataset is very close to the South Pole. Then we crop it to the region
we'd like to do SfS on.

point2dem -r moon --stereographic --proj-lon 0 \

--proj-lat -90 run_full1/run-PC.tif

gdal_translate -projwin -15471.9 150986 -14986.7 150549 \

run_full1/run-DEM.tif run_full1/run-crop-DEM.tif

This creates a DEM of size 456× 410 pixels.

Then we run sfs:

sfs -i run_full1/run-crop-DEM.tif A.cub -o sfs/run \

--smoothness-weight 0.08 --reflectance-type 0 \

--max-iterations 100 --use-approx-camera-models

This run should take an hour or more, but just after 10 iterations it should be clear how the solution is
behaving.

The smoothness weight is a parameter that needs tuning. If it is too small, SfS will return noisy results,
if it is too large, too much detail will be blurred. We have chosen to use here the plain Lambertian model
(re�ectance-type 0), as the Lunar Lambertian broke down so far South (an issue to be investigated). The
meaning of the other sfs options can be looked up in section A.26.

We show the results of running this program in �gure 10.1. The left-most �gure is the hill-shaded original
DEM, which was obtained by running:

hillshade --azimuth 300 --elevation 20 -o run_full1/run-crop5-hill.tif \

run_full1/run-crop-DEM.tif

The second image is the hill-shaded DEM obtained after running sfs for 15 iterations.

The third image is, for comparison, the map-projection of A.cub onto the original DEM, obtained via the
command:

72

Shape-from-Shading

mapproject --tr 1 run_full1/run-crop-DEM.tif A.cub A_map.tif --tile-size 128

The forth image is the colored absolute di�erence between the original DEM and the SfS output, obtained
by running:

geodiff --absolute sfs/run-DEM-iter15.tif run_full1/run-crop-DEM.tif

colormap --min 0 --max 2 --colormap-style binary-red-blue \

run-DEM-iter15__run-crop-DEM-diff.tif

Figure 10.1: An illustration of sfs. The images are, from left to right, the original hill-shaded DEM,
the hill-shaded DEM obtained from sfs, the image A.cub map-projected onto the original DEM, and the
absolute di�erence of the original and �nal DEM, where the brightest shade of red corresponds to a 2 meter
height di�erence.

It can be seen that the optimized DEM provides a wealth of detail and looks quite similar to the input
image. It also did not diverge signi�cantly from the input DEM. We will see in the next section that SfS
is in fact able to make the re�ned DEM more accurate than the initial guess (as compared to some known
ground truth), though that is not guaranteed, and most likely did not happen here where just one image
was used.

10.2 SfS with multiple images in the presence of shadows

In this section we will run sfs with multiple images. We would like to be able to see if SfS improves the
accuracy of the DEM rather than just adding detail to it. We evaluate this using the following (admittedly
imperfect) approach. We resample the original images by a factor of 10, run stereo with them, followed by
SfS using the stereo result as an initial guess and with the resampled images. As ground truth, we create
a DEM from the original images at 1 meter/pixel, which we bring closer to the initial guess for SfS using
pc_align. We would like to know if running SfS brings us even closer to this �ground truth� DEM.

The most signi�cant challenge in running SfS with multiple images is that shape-from-shading is highly
sensitive to errors in camera position and orientation. The sfs tool can improve these by �oating them
during optimization and by using a coarse-to-�ne scheme, where the problem is �rst solved using subsampled
images and terrain then it is successively re�ned.

If possible, it may still be desirable to bundle-adjust the cameras �rst (section A.4). It is important to note
that bundle adjustment may fail if the images have su�ciently di�erent illumination, as it will not be able
to �nd matches among images. In that case, it can be used at least among the images forming the stereo
pair that is used to create the initial DEM, and one of these images should be speci�ed as the �rst input
to SfS (as the tool keeps the camera pose of the �rst image �xed while optimizing the poses of the other
cameras to it). Alternatively, stereo_gui tool can be used to create the matches manually (section A.2).

73

Chapter 10

To make bundle adjustment and stereo faster, we �rst crop the images, such as shown below (the crop
parameters can be determined via stereo_gui).

crop from = A.cub to = A_crop.cub sample = 1 line = 6644 nsamples = 2192 nlines = 4982

crop from = B.cub to = B_crop.cub sample = 1 line = 7013 nsamples = 2531 nlines = 7337

crop from = C.cub to = C_crop.cub sample = 1 line = 1 nsamples = 2531 nlines = 8305

crop from = D.cub to = D_crop.cub sample = 1 line = 1 nsamples = 2531 nlines = 2740

Then we bundle-adjust and run stereo

bundle_adjust A_crop.cub B_crop.cub C_crop.cub D_crop.cub \

--min-matches 10 -o run_ba/run

stereo A_crop.cub B_crop.cub run_full2/run --subpixel-mode 3 \

--bundle-adjust-prefix run_ba/run

This will result in a point cloud, run_full2/run-PC.tif, which will lead us to the �ground truth� DEM.
As mentioned before, we'll in fact run SfS with images subsampled by a factor of 10. Subsampling is done
by running the ISIS reduce command

reduce from = A_crop.cub to = A_crop_sub10.cub sscale = 10 lscale = 10

and the same for the other images.

We run bundle adjustment and stereo with the subsampled images using commands analogous to the above:

bundle_adjust A_crop_sub10.cub B_crop_sub10.cub C_crop_sub10.cub D_crop_sub10.cub \

--min-matches 1 -o run_ba_sub10/run --ip-per-tile 100000

stereo A_crop_sub10.cub B_crop_sub10.cub run_sub10/run --subpixel-mode 3 \

--bundle-adjust-prefix run_ba_sub10/run

We'll obtain a point cloud named run_sub10/run-PC.tif.

We'll bring the �ground truth� point cloud closer to the initial guess for SfS using pc_align:

pc_align --max-displacement 200 run_full2/run-PC.tif run_sub10/run-PC.tif \

-o run_full2/run --save-inv-transformed-reference-points

This step is extremely important. Since we ran two bundle adjustment steps, and both were without ground
control points, the resulting clouds may di�er by a large translation, which we correct here.

Next we create the �ground truth� DEM from the aligned high-resolution point cloud, and crop it to a
desired region:

point2dem -r moon --tr 10 --stereographic --proj-lon 0 --proj-lat -90 \

run_full2/run-trans_reference.tif

gdal_translate -projwin -15540.7 151403 -14554.5 150473 \

run_full2/run-trans_reference-DEM.tif run_full2/run-crop-DEM.tif

We repeat the same steps for the initial guess for SfS:

point2dem -r moon --tr 10 --stereographic --proj-lon 0 --proj-lat -90 \

run_sub10/run-PC.tif

gdal_translate -projwin -15540.7 151403 -14554.5 150473 \

run_sub10/run-DEM.tif run_sub10/run-crop-DEM.tif

74

Shape-from-Shading

Next we run sfs itself. Since our dataset has many shadows, we found that specifying the shadow thresholds
for the tool improves the results. The thresholds can be determined using stereo_gui.

sfs -i run_sub10/run-crop-DEM.tif A_crop_sub10.cub C_crop_sub10.cub \

D_crop_sub10.cub -o sfs/run --threads 1 --smoothness-weight 0.12 \

--max-iterations 100 --reflectance-type 0 --float-exposure \

--float-cameras --use-approx-camera-models \

--bundle-adjust-prefix run_ba_sub10/run \

--shadow-thresholds "0.00162484 0.0012166 0.000781663"

We compare the initial guess to sfs to the �ground truth� DEM obtained earlier and the same for the
�nal re�ned DEM using geodiff as in the previous section. The mean error goes from 2.65 meters to 1.34
meters. Visually the re�ned DEM looks more detailed as well as seen in �gure 10.2.

We also show in this �gure the �rst of the images used for SfS, A_crop_sub10.cub, map-projected upon the
optimized DEM. Note that we use the previously computed bundle-adjusted cameras when map-projecting,
otherwise the image will show as shifted from its true location:

mapproject sfs/run-DEM-iter28.tif A_crop_sub10.cub A_crop_sub10_map.tif \

--bundle-adjust-prefix run_ba_sub10/run

Figure 10.2: An illustration of sfs. The images are, from left to right, the hill-shaded initial guess DEM
for SfS, the hill-shaded DEM obtained from sfs, the �ground truth� DEM, and the �rst of the images used
in SfS map-projected onto the optimized DEM.

10.3 Insights for getting the most of sfs

Here are a few suggestions we have found helpful when running sfs:

• First determine the appropriate smoothing term, by running a small clip, and using just one image.

• Bundle-adjustment for multiple images is crucial. It is suggested to examine the measured intensity
images output by sfs for some iterations using stereo_gui with the options --single-window and
--use-georef to see if the images overlay correctly, and if the overlay error appears to go down as
the tool is running. If not, the cameras have a pose error that is too big for the algorithm to correct
it.

• If bundle adjustment is not successful, the option -�coarse-levels is very helpful in �xing errors
in camera positions. It �rst runs SfS at a coarse resolution, and progressively re�nes the results. A
good value for the number of levels can be 3 to 5 (downsampling the images by a factor of 32 and
128 respectively), larger values are suggested for larger camera errors.

75

Chapter 10

• Floating the albedo (option --float-albedo) can introduce instability and divergence, it should be
avoided unless albedo variation is seen in the images.

• Floating the DEM at the boundary (option --float-dem-at-boundary) is also suggested to be
avoided.

• Overall, the best strategy is to �rst use SfS for a single image and not �oat any variables except the
DEM being optimized, and then gradually add images and �oat more variables and select whichever
approach seems to give better results.

76

Chapter 11

Data Processing Examples

This chapter showcases a variety of results that are possible when processing di�erent data sets with the
Stereo Pipeline. It is also a shortened guide that shows the commands used to process speci�c mission
data. There is no de�nitive method yet for making elevation models as each stereo pair is unique. We hope
that the following sections serve as a cookbook for strategies that will get you started in processing your
own data. We recommend that you second check your results against another source.

11.1 Guidelines for Selecting Stereo Pairs

When choosing image pairs to process, images that are taken with similar viewing angles, lighting conditions,
and signi�cant surface coverage overlap are best suited for creating terrain models. Depending on the
characteristics of the mission data set and the individual images, the degree of acceptable variation will
di�er. Signi�cant di�erences between image characteristics increases the likelihood of stereo matching error
and artifacts, and these errors will propagate through to the resulting data products.

Although images do not need to be map-projected before running the stereo program, we recommend
that you do run cam2map (or cam2map4stereo.py) beforehand, especially for image pairs that contain large
topographic variation (and therefore large disparity di�erences across the scene, e.g., Valles Marineris).
Map-projection is especially necessary when processing HiRISE images. This removes the large disparity
di�erences between HiRISE images and leaves only the small detail for the Stereo Pipeline to compute.
Remember that ISIS can work backwards through a map-projection when applying the camera model, so
the geometric integrity of your images will not be sacri�ced if you map-project �rst.

An alternative way of map-projection, that applies to non-ISIS imagery as well, is with the mapproject

tool (section 5.1.6).

Excessively noisy images will not correlate well, so images should be photometrically calibrated in whatever
fashion suits your purposes. If there are photometric problems with the images, those photometric defects
can be misinterpreted as topography.

Remember, in order for stereo to process stereo pairs in ISIS cube format, the images must have had
SPICE data associated by running ISIS's spiceinit program run on them �rst.

11.2 Mars Reconnaissance Orbiter HiRISE

HiRISE is one of the most challenging cameras to use when making 3D models because HiRISE exposures
can be several gigabytes each. Working with this data requires patience as it will take time.

77

Chapter 11

One important fact to know about HiRISE is that it is composed of multiple linear CCDs that are arranged
side by side with some vertical o�sets. These o�sets mean that the CCDs will view some of the same terrain
but at a slightly di�erent time and a slightly di�erent angle. Mosaicking the CCDs together to a single
image is not a simple process and involves living with some imperfections.

One cannot simply use the HiRISE RDR products, as they do not have the required geometric stability.
Instead, the HiRISE EDR products must be assembled using ISIS noproj. The USGS distributes a script
in use by the HiRISE team that works forward from the team-produced `balance' cubes, which provides
a de-jittered, noproj'ed mosaic of a single observation, which is perfectly suitable for use by the Stereo
Pipeline (this script was originally engineered to provide input for SOCET SET). However, the `balance'
cubes are not available to the general public, and so we include a program (hiedr2mosaic.py, written in
Python) that will take PDS available HiRISE EDR products and walk through the processing steps required
to provide good input images for stereo.

The program takes all the red CCDs and projects them using the ISIS noproj command into the perspective
of the RED5 CCD. From there, hijitreg is performed to work out the relative o�sets between CCDs.
Finally the CCDs are mosaicked together using the average o�set listed from hijitreg using the handmos
command, and the mosaic is normalized with cubenorm. Below is an outline of the processing.

hi2isis # Import HiRISE IMG to Isis

hical # Calibrate

histitch # Assemble whole-CCD images from the channels

spiceinit

spicefit # For good measure

noproj # Project all images into perspective of RED5

hijitreg # Work out alignment between CCDs

handmos # Mosaic to single file

cubenorm # Normalize the mosaic

To use our script, �rst go to the directory where you have downloaded the HiRISE's RED EDR IMG �les.
You can run the hiedr2mosaic.py program without any arguments to view a short help statement, with
the -h option to view a longer help statement, or just run the program on the EDR �les like so:

hiedr2mosaic.py *.IMG

If you have more than one observation's worth of EDRs in that directory, then limit the program to just
one observation's EDRs at a time, e.g. hiedr2mosaic.py PSP_001513_1655*IMG. If you run into problems,
try using the -k option to retain all of the intermediary image �les to help track down the issue. The
hiedr2mosaic.py program will create a single mosaic �le with the extension .mos_hijitreged.norm.cub.
Be warned that the operations carried out by hiedr2mosaic.py can take many hours to complete on the
very large HiRISE images.

An example of using ASP with HiRISE data is included in the examples/HiRISE directory (just type 'make'
there).

11.2.1 Columbia Hills

HiRISE observations PSP_001513_1655 and PSP_001777_1650 are on the �oor of Gusev Crater and
cover the area where the MER Spirit landed and has roved, including the Columbia Hills.

78

http://www.python.org
http://hirise.lpl.arizona.edu/PSP_001513_1655
http://hirise.lpl.arizona.edu/PSP_001777_1650

Data Processing Examples

(a) 3D Rendering (b) KML Screenshot

Figure 11.1: Example output using HiRISE images PSP_001513_1655 and PSP_001777_1650 of the
Columbia Hills.

Commands

Download all 20 of the RED EDR .IMG �les for each observation.

ISIS 3> hiedr2mosaic.py PSP_001513_1655_RED*.IMG

ISIS 3> hiedr2mosaic.py PSP_001777_1650_RED*.IMG

ISIS 3> cam2map4stereo.py PSP_001777_1650_RED.mos_hijitreged.norm.cub \

PSP_001513_1655_RED.mos_hijitreged.norm.cub

ISIS 3> stereo PSP_001513_1655.map.cub \

PSP_001777_1650.map.cub result/output

stereo.default

The stereo.default example �le (appendix B) should apply well to HiRISE. Just set alignment-method to
none if using map-projected imagery. If you are not using map-projected imagery, set alignment-method
to homography or affineepipolar. The corr-kernel value can usually be safely reduced to 21 pixels to
resolve �ner detail and faster processing for images with good contrast.

11.3 Mars Reconnaissance Orbiter CTX

Context Camera (CTX) is a moderate camera to work with. Processing times for CTX can be pretty long
when using Bayes EM subpixel re�nement. Otherwise the disparity between images is relatively small,
allowing e�cient computation and a reasonable processing time.

79

Chapter 11

11.3.1 North Terra Meridiani

In this example, we use map-projected images. Map-projecting the images is the most reliable way
to align the images for correlation. However when possible, use non-map-projected images with the
alignment-method affineepipolar option. This greatly reduces the time spent in triangulation. For all
cases using linescan cameras, triangulation of map-projected images is 10x slower than non-map-projected
images.

This example is distributed in the examples/CTX directory (type 'make' there to run it).

Commands

Download the CTX images P02_001981_1823_XI_02N356W.IMG and P03_002258_1817_XI_01N356W.IMG
from the PDS.

ISIS 3> mroctx2isis from=P02_001981_1823_XI_02N356W.IMG to=P02_001981_1823.cub

ISIS 3> mroctx2isis from=P03_002258_1817_XI_01N356W.IMG to=P03_002258_1817.cub

ISIS 3> spiceinit from=P02_001981_1823.cub

ISIS 3> spiceinit from=P03_002258_1817.cub

ISIS 3> ctxcal from=P02_001981_1823.cub to=P02_001981_1823.cal.cub

ISIS 3> ctxcal from=P03_002258_1817.cub to=P03_002258_1817.cal.cub

you can also optionally run ctxevenodd on the cal.cub �les, if needed
ISIS 3> cam2map4stereo.py P02_001981_1823.cal.cub P03_002258_1817.cal.cub

ISIS 3> stereo P02_001981_1823.map.cub P03_002258_1817.map.cub results/out

stereo.default

The stereo.default example �le (appendix B) works generally well with all CTX pairs. Just set alignment-method
to homography or affineepipolar.

(a) 3D Rendering (b) KML Screenshot

Figure 11.2: Example output possible with the CTX imager aboard MRO.

80

Data Processing Examples

11.4 Mars Global Surveyor MOC-NA

In the Stereo Pipeline Tutorial in Chapter 3, we showed you how to process a narrow angle MOC stereo
pair that covered a portion of Hrad Vallis. In this section we will show you more examples, some of which
exhibit a problem common to stereo pairs from linescan imagers: �spacecraft jitter� is caused by oscillations
of the spacecraft due to the movement of other spacecraft hardware. All spacecraft wobble around to some
degree but some are particularly susceptible.

Jitter causes wave-like distortions along the track of the satellite orbit in DEMs produced from linescan
camera images. This e�ect can be very subtle or quite pronounced, so it is important to check your
data products carefully for any sign of this type of artifact. The following examples will show the typical
distortions created by this problem.

Note that the science teams of HiRISE and Lunar Reconnaissance Orbiter Camera (LROC) are actively
working on detecting and correctly modeling jitter in their respective SPICE data. If they succeed in this,
the distortions will still be present in the raw imagery, but the jitter will no longer produce ripple artifacts
in the DEMs produced using ours or other stereo reconstruction software.

11.4.1 Ceraunius Tholus

Ceraunius Tholus is a volcano in northern Tharsis on Mars. It can be found at 23.96 N and 262.60 E. This
DEM crosses the volcano's caldera.

(a) 3D Rendering (b) KML Screenshot

Figure 11.3: Example output for MOC-NA of Ceraunius Tholus. Notice the presence of severe washboarding
artifacts due to spacecraft �jitter.�

Commands

Download the M08/06047 and R07/01361 images from the PDS.

ISIS 3> moc2isis f=M0806047.img t=M0806047.cub

81

Chapter 11

ISIS 3> moc2isis f=R0701361.img t=R0701361.cub

ISIS 3> spiceinit from=M0806047.cub

ISIS 3> spiceinit from=R0701361.cub

ISIS 3> cam2map4stereo.py M0806047.cub R0701361.cub

ISIS 3> stereo M0806047.map.cub R0701361.map.cub result/output

stereo.default

The stereo.default example �le (appendix B) works generally well with all MOC-NA pairs. Just set
alignment-method to none when using map-projected imagery. If the images are not map-projected,
use homography or affineepipolar.

11.5 Mars Exploration Rovers

The Mars Exploration Rovers (MER) have several cameras on board and they all seem to have a stereo
pair. With ASP you are able to process the PANCAM, NAVCAM, and HAZCAM camera imagery. ISIS
has no telemetry or camera intrinsic supports for these images. That however is not a problem as their raw
imagery contains the cameras' information in JPL's CAHV, CAHVOR, and CHAVORE formats.

These cameras are all variations of a simple pinhole camera model so they are processed with ASP in the
Pinhole session instead of the usual ISIS. ASP only supports creating of point clouds. The *-PC.tif is a
raw point cloud with the �rst 3 channels being XYZ in the rover site's coordinate frame. We don't support
the creation of DEMs from these images and that is left as an exercise for the user.

An example of using ASP with MER data is included in the examples/MER directory (just type 'make'
there).

11.5.1 PANCAM, NAVCAM, HAZCAM

All of these cameras are processed the same way. We'll be showing 3D processing of the front hazard
cams. The only new things in the pipeline is the new executable mer2camera along with the use of
alignment-method epipolar. This example is also provided in the MER data example directory.

82

Data Processing Examples

(a) Rectified Input (b) Output Point Cloud

Figure 11.4: Example output possible with the front hazard cameras.

Commands

Download 2f194370083e�ap00p1214l0m1.img and 2f194370083e�ap00p1214r0m1.img from the PDS.

ISIS 3> mer2camera 2f194370083effap00p1214l0m1.img

ISIS 3> mer2camera 2f194370083effap00p1214r0m1.img

ISIS 3> stereo 2f194370083effap00p1214l0m1.img 2f194370083effap00p1214r0m1.img \

2f194370083effap00p1214l0m1.cahvore 2f194370083effap00p1214r0m1.cahvore \

fh01/fh01

stereo.default

The default stereo settings will work but change the following options. The universe option �lters out
points that are not triangulated well because they are too close robot's hardware or are extremely far away.

additional settings for MER
alignment-method epipolar

force-use-entire-range

This deletes points that are too far away

from the camera to truly triangulate.

universe-center Camera

near-universe-radius 0.7

far-universe-radius 80.0

83

Chapter 11

11.6 K10

K10 is an Earth-based research rover within the Intelligent Robotics Group at NASA Ames, the group
ASP developers belong to. The cameras on this rover use a simple Pinhole model. The use of ASP with
these cameras is illustrated in the examples/K10 directory (just type 'make' there). Just as for the MER
datatset (section 11.5), only the creation of a point cloud is supported.

84

Data Processing Examples

11.7 Lunar Reconnaissance Orbiter LROC NAC

11.7.1 Lee-Lincoln Scarp

This stereo pair covers the Taurus-Littrow valley on the Moon where, on December 11, 1972, the astronauts
of Apollo 17 landed. However, this stereo pair does not contain the landing site. It is slightly west; focusing
on the Lee-Lincoln scarp that is on North Massif. The scarp is an 80 m high feature that is the only visible
sign of a deep fault.

(a) 3D Rendering (b) KML Screenshot

Figure 11.5: Example output possible with a LROC NA stereo pair, using both CCDs from each observation
courtesy of the lronac2mosaic.py tool.

Commands

Download the EDRs for the left and right CCDs for observations M104318871 and M104318871 from
http://wms.lroc.asu.edu/lroc/search. Alternatively you can search by original IDs of 2DB8 and 4C86
in the PDS.

All ISIS preprocessing of the EDRs is performed via the lronac2mosaic.py command. This runs lronac2isis,
lronaccal, lronacecho, spiceinit, noproj, and handmos to create a stitched unprojected image for a sin-
gle observation. In this example we don't map-project the images as ASP can usually get good results.
More aggressive terrain might require an additional cam2map4stereo.py step.

ISIS 3> lronac2mosaic.py M104318871LE.img M104318871RE.img

ISIS 3> lronac2mosaic.py M104311715LE.img M104311715RE.img

ISIS 3> stereo M104318871LE*.mosaic.norm.cub M104311715LE*.mosaic.norm.cub \

result/output --alignment-method affineepipolar

85

http://wms.lroc.asu.edu/lroc/search

Chapter 11

stereo.default

The defaults work generally well with LRO-NAC pairs, so you don't need to provide a stereo.default
�le. Map-projecting is optional. When map-projecting the images use alignment-method none, otherwise
use alignment-method affineepipolar. Better map-project results can be achieved by projecting on a
higher resolution elevation source like the WAC DTM. This is achieved using the ISIS command demprep

and attaching to cube �les via spiceinit's SHAPE and MODEL options.

11.8 Apollo 15 Metric Camera Images

Apollo Metric images were all taken at regular intervals, which means that the same stereo.default can
be used for all sequential pairs of images. Apollo Metric images are ideal for stereo processing. They
produce consistent, excellent results.

The scans performed by ASU are su�ciently detailed to exhibit �lm grain at the highest resolution. The
amount of noise at the full resolution is not helpful for the correlator, so we recommend subsampling the
images by a factor of 4.

Currently the tools to ingest Apollo TIFFs into ISIS are not available, but these images should soon be
released into the PDS for general public usage.

11.8.1 Ansgarius C

Ansgarius C is a small crater on the west edge of the far side of the Moon near the equator. It is east of
Kapteyn A and B.

(a) 3D Rendering (b) KML Screenshot

Figure 11.6: Example output possible with Apollo Metric frames AS15-M-2380 and AS15-M-2381.

86

Data Processing Examples

Commands

Process Apollo TIFF �les into ISIS.

ISIS 3> reduce from=AS15-M-2380.cub to=sub4-AS15-M-2380.cub sscale=4 lscale=4

ISIS 3> reduce from=AS15-M-2381.cub to=sub4-AS15-M-2381.cub sscale=4 lscale=4

ISIS 3> spiceinit from=sub4-AS15-M-2380.cub

ISIS 3> spiceinit from=sub4-AS15-M-2381.cub

ISIS 3> stereo sub4-AS15-M-2380.cub sub4-AS15-M-2381.cub result/output

stereo.default

The stereo.default example �le (appendix B) works generally well with all Apollo pairs. Just set alignment-method
to homography or affineepipolar.

87

Chapter 11

11.9 Cassini ISS NAC

This is a proof of concept showing the strength of building the Stereo Pipeline on top of ISIS. Support
for processing ISS NAC stereo pairs was not a goal during our design of the software, but the fact that a
camera model exists in ISIS means that it too can be processed by the Stereo Pipeline.

Identifying stereo pairs from spacecraft that do not orbit their target is a challenge. We have found that
one usually has to settle with images that are not ideal: di�erent lighting, little perspective change, and
little or no stereo parallax. So far we have had little success with Cassini's data, but nonetheless we provide
this example as a potential starting point.

11.9.1 Rhea

Rhea is the second largest moon of Saturn and is roughly a third the size of our own Moon. This example
shows, at the top right of both images, a giant impact basin named Tirawa that is 220 miles across. The
bright white area south of Tirawa is ejecta from a new crater. The lack of texture in this area poses a
challenge for our correlator. The results are just barely useful: the Tirawa impact can barely be made out
in the 3D data while the new crater and ejecta become only noise.

Commands

Download the N1511700120_1.IMG and W1567133629_1.IMG images and their label (.LBL) �les from the
PDS.

ISIS 3> ciss2isis f=N1511700120_1.LBL t=N1511700120_1.cub

ISIS 3> ciss2isis f=W1567133629_1.LBL t=W1567133629_1.cub

ISIS 3> cisscal from=N1511700120_1.cub to=N1511700120_1.lev1.cub

ISIS 3> cisscal from=W1567133629_1.cub to=W1567133629_1.lev1.cub

ISIS 3> fillgap from=W1567133629_1.lev1.cub to=W1567133629_1.fill.cub %Only one image

%exhibits the problem

ISIS 3> cubenorm from=N1511700120_1.lev1.cub to=N1511700120_1.norm.cub

ISIS 3> cubenorm from=W1567133629_1.fill.cub to=W1567133629_1.norm.cub

ISIS 3> spiceinit from=N1511700120_1.norm.cub

ISIS 3> spiceinit from=W1567133629_1.norm.cub

ISIS 3> cam2map from=N1511700120_1.norm.cub to=N1511700120_1.map.cub

ISIS 3> cam2map from=W1567133629_1.norm.cub map=N1511700120_1.map.cub \

ISIS 3> to=W1567133629_1.map.cub matchmap=true

ISIS 3> stereo N1511700120_1.map.equ.cub W1567133629_1.map.equ.cub result/rhea

88

Data Processing Examples

(a) Original Left Image (b) Original Right Image

(c) Map-Projected Left (d) 3D Rendering

Figure 11.7: Example output of what is possible with Cassini's ISS NAC

89

Chapter 11

stereo.default

stereo.default for Cassini ISS
PREPROCESSING

alignment-method none

force-use-entire-range

individually-normalize

CORRELATION

prefilter-mode 2

prefilter-kernel-width 1.5

cost-mode 2

corr-kernel 25 25

corr-search -55 -2 -5 10

subpixel-mode 3

subpixel-kernel 21 21

FILTERING

rm-half-kernel 5 5

rm-min-matches 60 # Units = percent

rm-threshold 3

rm-cleanup-passes 1

11.10 Digital Globe Imagery

Processing of Digital Globe images is described extensively in the tutorial in chapter 4.

11.11 GeoEye and Astrium Imagery / RPC Imagery

GeoEye provides imagery from Ikonos and the two GeoEye satellites. Astrium provides imagery from SPOT
and Pleiades satellites. Both companies provide only Rational Polynomial Camera (RPC) models. RPC
represents four 20-element polynomials that map geodetic coordinates to image coordinates. Since they are
easy to implement, RPC represents a universal camera model and can be had from many imaging providers;
Digital Globe also provides them. The only downside is that it has less precision in our opinion compared
to the linear camera model provided by Digital Globe. For GeoEye and Astrium, the only option is using
RPC.

Our RPC read driver is GDAL. If the command gdalinfo can identify the RPC information inside the
headers of your �les, ASP will likely be able to see it as well. This means that sometimes we can get
away with only providing a left and right image, with no extra �les containing camera information. This is
speci�cally the case for GeoEye.

You can download an example stereo pair from GeoEye's website at [11]. When we accessed the site, we
downloaded a GeoEye-1 image of Hobart, Australia. As previously stated in the Digital Globe section, these
types of images are not ideal for ASP. This is both a forest and a urban area which makes correlation di�cult.
ASP was designed more for modeling bare rock and ice. Any results we produce in other environments is
a bonus but is not our objective.

90

Data Processing Examples

Figure 11.8: Example colorized height map and ortho image output.

Commands

> stereo -t rpc po_312012_pan_0000000.tif po_312012_pan_0010000.tif geoeye/geoeye

In case the image �les do not contain the RPC models, separate XML �les having this information need to
be provided, as done for Digital Globe images (section 4.1).

For terrain having steep slopes, we recommend that images be map-projected onto an existing DEM before
running stereo. This is described in section 5.1.6.

stereo.default

The stereo.default example �le (appendix B) works generally well with all GeoEye pairs. Just set alignment-method
to affineepipolar or homography.

11.12 Dawn (FC) Framing Camera

This is a NASA mission to visit two of the largest objects in the asteroid belt, Vesta and Ceres. The
framing camera on board Dawn is quite small and packs only a resolution of 1024x1024 pixels. This means
processing time is extremely short. To its bene�t, it seems that the mission planners leave the framing
camera on taking shots quite rapidly. On a single pass, they seem to usually take a chain of FC images
that have a high overlap percentage. This opens the idea of using ASP to process not only the sequential
pairs, but also the wider baseline shots. Then someone could potentially average all the DEMs together to
create a more robust data product.

For this example, we downloaded the images

FC21A0010191_11286212239F1T.IMG and FC21A0010192_11286212639F1T.IMG

which show the Cornelia crater. We found these images by looking at the popular anaglyph shown on the
Planetary Science Blog [16].

Commands

First you must download the Dawn FC images from PDS.

91

Chapter 11

Figure 11.9: Example colorized height map and ortho image output.

ISIS3 > dawnfc2isis from=FC21A0010191_11286212239F1T.IMG \

to=FC21A0010191_11286212239F1T.cub

ISIS3 > dawnfc2isis from=FC21A0010192_11286212639F1T.IMG \

to=FC21A0010192_11286212639F1T.cub

ISIS3 > spiceinit from=FC21A0010191_11286212239F1T.cub

ISIS3 > spiceinit from=FC21A0010192_11286212639F1T.cub

ISIS3 > stereo FC21A0010191_11286212239F1T.cub \

FC21A0010192_11286212639F1T.cub stereo/stereo

ISIS3 > point2dem stereo-PC.tif --orthoimage stereo-L.tif \

--t_srs "+proj=eqc +lat_ts=-11.5 +a=280000 +b=229000 +units=m"

stereo.default

The stereo.default example �le (appendix B) works well for this stereo pair. Just set alignment-method to
affineepipolar or homography.

92

Part III

Appendices

93

Appendix A

Tools

This chapter provides a overview of the various tools that are provided as part of the Ames Stereo Pipeline,
and a summary of their command line options.

A.1 stereo

The stereo program is the primary tool of the Ames Stereo Pipeline. It takes a stereo pair of images that
overlap and creates an output point cloud image that can be processed into a visualizable mesh or a DEM
using point2mesh (section A.6) and point2dem (section A.5), respectively.

Usage:

ISIS 3> stereo [options] <images> [<cameras>] output_file_prefix

Example (for ISIS):

stereo file1.cub file2.cub results/run

For ISIS, a .cub �le has both image and camera information, as such no separate camera �les are speci�ed.

Example (for Digital Globe Earth images):

stereo file1.tif file2.tif file1.xml file2.xml results/run

Multiple input images are also supported (section 5.1.7).

This tool is is primarily designed to process USGS ISIS .cub �les and Digital Globe data. However,
Stereo Pipeline does have the capability to process other types of stereo image pairs (e.g., image �les with a
CAHVOR camera model from the NASA MER rovers). If you would like to experiment with these features,
please contact us for more information.

The output_file_prefix is prepended to all output data �les. For example, setting output_file_prefix

to `out' will yield �les with names like out-L.tif and out-PC.tif. To keep the Stereo Pipeline re-
sults organized in sub-directories, we recommend using an output pre�x like `results-10-12-09/out' for
output_file_prefix . The stereo program will create a directory called results-10-12-09/ and place
�les named out-L.tif, out-PC.tif, etc. in that directory.

95

Chapter A

Table A.1: Command-line options for stereo

Option Description

--help|-h Display the help message

--session-type|-t pinhole|isis|dg|rpc Select the stereo session type to use for pro-
cessing. Usually the program can select this
automatically by the �le extension.

--stereo-file|-s filename(=./stereo.default) De�ne the stereo.default �le to use.

--entry-point|-e integer(=0 to 4) Stereo Pipeline entry point (start at this
stage).

--stop-point|-e integer(=1 to 5) Stereo Pipeline stop point (stop at the stage
right before this value).

--corr-seed-mode integer(=0 to 3) Correlation seed strategy (section B.2).

--threads integer(=0) Set the number of threads to use. 0 means
use as many threads as there are cores.

--no-bigtiff Tell GDAL to not create bigti�s.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

More information about additional options that can be passed to stereo via the command line or via
the stereo.default con�guration �le can be found in Appendix B on page 139. stereo creates a set of
intermediate �les, they are described in Appendix C on page 147.

A.1.1 Entry Points

The stereo -e number option can be used to restart a stereo job partway through the stereo correlation
process. Restarting can be useful when debugging while iterating on stereo.default settings.

Stage 0 (Preprocessing) normalizes the two images and aligns them by locating interest points and matching
them in both images. The program is designed to reject outlying interest points. This stage writes out the
pre-aligned images and the image masks.

Stage 1 (Disparity Map Initialization) performs pyramid correlation and builds a rough disparity map that
is used to seed the sub-pixel re�nement phase.

Stage 2 (Sub-pixel Re�nement) performs sub-pixel correlation that re�nes the disparity map.

Stage 3 (Outlier Rejection and Hole Filling) performs �ltering of the disparity map and (optionally) �lls in
holes using an inpainting algorithm. This phase also creates a �good pixel� map.

Stage 4 (Triangulation) generates a 3D point cloud from the disparity map.

A.1.2 Decomposition of Stereo

The stereo executable is a python script that makes calls to separate C++ executables for each entry
point.

Stage 0 (Preprocessing) calls stereo_pprc. Multi-threaded.

Stage 1 (Disparity Map Initialization) calls stereo_corr. Multi-threaded.

Stage 2 (Sub-pixel Re�nement) class stereo_rfne. Multi-threaded.

Stage 3 (Outlier Rejection and Hole Filling) calls stereo_fltr. Multi-threaded.

96

Tools

Stage 4 (Triangulation) calls stereo_tri. Multi-threaded, except for ISIS input data.

All of the sub-programs have the same interface as stereo. Users processing a large number of stereo pairs
on a cluster may �nd it advantageous to call these executables in their own manner. An example would
be to run stages 0-3 in order for each stereo pair. Then run several sessions of stereo_tri since it is
single-threaded for ISIS.

It is important to note that each of the C++ stereo executables invoked by stereo have their own command-
line options. Those options can be passed to stereo which will in turn pass them to the appropriate
executable. By invoking each executable with no options, it will display the list of options it accepts.

As explained in more detail in section 5.1.2, each such option has the same syntax as used in stereo.default,
while being prepended by a double hyphen (--). A command line option takes precedence over the same
option speci�ed in stereo.default. Chapter B documents all options for the individual sub-programs.

A.2 stereo_gui

The stereo_gui program is a GUI frontend to stereo, and has the same command-line options. It can
display the input images side-by-side (and in other ways, as detailed later). One can zoom in by dragging
the mouse from upper-left to lower-right, and zoom out via the reverse motion.

By pressing the Control key while dragging the mouse, regions can be selected in the input images, and
then stereo can be run on these regions from the menu via Run→Stereo. The stereo command that is
invoked (with parameters for the selected regions) will be displayed on screen, and can be re-run on a more
powerful machine/cluster without GUI access.

Additional navigation options are using the mouse wheel or the +/- keys to zoom, and the arrow keys to
pan (one should �rst click to bring into focus the desired image before using any keys).

Figure A.1: An illustration of stereo_gui. The stereo command will be run on the regions selected by red
rectangles.

Usage:

ISIS 3> stereo_gui [options] <images> [<cameras>] output_file_prefix

97

Chapter A

A.2.1 Use as an Image Viewer

This program can be also used as a general-purpose image viewer, case in which no stereo options or camera
information is necessary. It can display arbitrarily large images with integer, �oating-point, or RGB pixels,
including ISIS .cub �les and DEMs. It handles large images by building on disk pyramids of increasingly
coarser subsampled images and displaying the subsampled versions that are appropriate for the current
level of zoom.

The images can be shown either side-by-side, as tiles on a grid (using --grid-cols integer), or on top of
each other (using --single-window), with a dialog to choose among them. In the last usage scenario, the
option --use-georef will overlay the images correctly if georeference information is present. It is possible
to switch among these modes once the GUI has been open, from the GUI View menu.

stereo_gui can show hillshaded DEMs, either via the --hillshade option, or by choosing from the GUI
View menu the Hillshaded images option.

This program can also display the output of the ASP colormap tool (section A.22).

A.2.2 Other Functionality

View/create/delete/save interest point matches

stereo_gui can be used to view interest point matches (*.match �les), such as generated by bundle_adjust
and stereo. It can also manually create and delete matches (useful in situations when automatic interest
point matching is unreliable due to large changes in illumination).

The match �le to load can be speci�ed via --match-file. It may also be auto-detected if stereo_gui was
invoked like stereo, with an output pre�x (auto-detection works only when images are not map-projected
and alignment is homography or a�ne epipolar).

Create GCP

stereo_gui can be used to create ground control point (GCP) �les for bundle_adjust. It is assumed that
the user has two or more images and corresponding cameras that need adjustment. It is also assumed
that there exists an additional reference image, possible from another source, that is georeferenced, and
a reference DEM from which one can infer xyz coordinates. All these images, but not the cameras or
the reference DEM, should be loaded in the GUI, with the reference georeferenced image being the last.
For each output ground control point, an interest point must be picked manually in each of the images.
When �nished, use the "IP matches"->"Write GCP �le" menu item to generate a ground control point �le
containing the selected points. You will be prompted for the reference DEM and for the desired output �le
name. The last image, that is the reference, is only used to �nd the positions on the ground, which in turn
are used to �nd the heights for the GCPs from the DEM. The selected interest points from the reference
image are not saved to the GCP �le.

Shadow threshold

stereo_gui can be used to �nd the shadow threshold for each of a given set of images (useful for shape-from-
shading (chapter 10). This can be done by turning on from the menu the Shadow threshold detection

mode, and then clicking on pixels in the shadow. The largest of the chosen pixel values will be set to the
shadow threshold for each image and printed to the screen. To see the images with the pixels below the
shadow threshold highlighted, select from the menu the View shadow-thresholded images option.

98

Tools

Listed below are the options speci�c to stereo_gui. It will accept all other stereo options as well.

Table A.2: Command-line options for stereo_gui

Option Description

-h | --help Display this help message.

--grid-cols arg Display images as tiles on a grid with this
many columns. Default: Use one row.

--window-size arg (=1200 800) The width and height of the GUI window in
pixels.

-w | --single-window Show all images in the same window (with
a dialog to choose among them) rather than
next to each other.

--use-georef Plot the images in the projected coordinate
system given by image georeferences.

--hillshade Interpret the input images as DEMs and hill-
shade them.

--view-matches Locate and display the interest point
matches.

--match-file Display this match �le instead of looking
one up based on existing conventions (implies
--view-matches).

--delete-temporary-files-on-exit Delete any subsampled and other �les created
by the GUI when exiting.

--create-image-pyramids-only Without starting the GUI, build multi-
resolution pyramids for the inputs, to be able
to load them fast later.

A.3 parallel_stereo

The parallel_stereo program is a modi�cation of stereo designed to distribute the stereo processing
over multiple computing nodes. It uses GNU Parallel to manage the jobs, a tool which is distributed along
with Stereo Pipeline. It expects that all nodes can connect to each other using ssh without password.
parallel_stereo can also be useful when processing extraterrestrial data on a single computer. This
is because ISIS camera models are restricted to a single thread, but parallel_stereo can run multiple
processes in parallel to reduce computation times.

At the simplest, parallel_stereo can be invoked exactly like stereo, with the addition of the list of nodes
to use (if using multiple nodes).

parallel_stereo --nodes-list machines.txt <other stereo options>

It will create the same output �les as stereo. (Internally some of them will be GDAL VRT �les, that is,
virtual mosaics of �les created by individual processes; ASP and GDAL tools are able to use these virtual
�les in the same way as regular binary TIF �les.)

If your jobs are launched on a cluster or supercomputer, the name of the �le containing the list of nodes
may exist as an environmental variable. For example, on NASA's Pleiades Supercomputer, which uses the
Portable Batch System (PBS), the list of nodes can be retrieved as $PBS_NODEFILE.

99

Chapter A

It is important to note that when invoking this tool only stages 1, 2, and 4 of stereo (section A.1.2) are
spread over multiple machines, with stages 0 and 3 using just one node, as they require global knowledge
of the data. In addition, not all stages of stereo bene�t equally from parallelization. Most likely to gain are
stages 1 and 2 (correlation and re�nement) which are the most computationally expensive.

For these reasons, while parallel_stereo can be called to do all stages of stereo generation from start to
�nish in one command, it may be more resource-e�cient to invoke it using a single node for stages 0 and
3, many nodes for stages 1 and 2, and just a handful of nodes for stage 4 (triangulation). For example, to
invoke the tool only for stage 2, one uses the options:

--entry-point 2 --stop-point 3

parallel_stereo accepts the following options (any additional options given to it will be passed to the
stereo executables for each stage).

Table A.3: Command-line options for parallel_stereo

Options Description

--help|-h Display the help message.

--nodes-list filename The list of computing nodes, one per line. If
not provided, run on the local machine.

--entry-point|-e integer(=0 to 4) Stereo Pipeline entry point (start at this
stage).

--stop-point|-e integer(=1 to 5) Stereo Pipeline stop point (stop at the stage
right before this value).

--corr-seed-mode integer(=0 to 3) Correlation seed strategy (section B.2).

--sparse-disp-options string Options to pass directly to sparse_disp (sec-
tion 4.5).

--verbose Display the commands being executed.

A.3.1 Advanced usage

The parallel_stereo tool tries to take advantage of its inside knowledge of the individual stereo sub-
programs to decide how many threads and processes to use at each stage, and by default, it it will try to
use all nodes to the fullest.

The advanced user can try to gain �ner-level control of the tool, as described below. This may not necessarily
result in improved performance compared to using the default settings.

As an example of using the advanced options, assume that we would like to launch the re�nement and
�ltering steps only (stages 2 and 3). We will distribute the re�nement over a number of nodes, using 4
processes on each node, with each process creating 16 threads. For the �ltering stage, which is done in one
process on one machine, we want to use 32 threads. The appropriate command is then:

parallel_stereo --nodes-list machines.txt --processes 4 --threads-multiprocess 16 \

--threads-singleprocess 32 --entry-point 2 --stop-point 4 <other stereo options>

To better take advantage of these options, the user should know the following. parallel_stereo starts a
process for every image block, whose size is by default 2048× 2048 (job-size-w by job-size-h). On such
a block, the correlation, and subpixel re�nement stages will use at most 4 and 64 threads respectively (1

100

Tools

and 16 threads for each 1024 × 1024 tile). Triangulation will use at most 64 threads as well, except for
ISIS cameras, when it is single-threaded due to the limitations of ISIS (we account for the latter when the
number of threads and processes are decided automatically, but not when these advanced options are used).

Table A.4: Advanced options for parallel_stereo

Options Description

--job-size-w integer(=2048) Pixel width of input image tile for a single
process.

--job-size-h integer(=2048) Pixel height of input image tile for a single
process.

--processes integer The number of processes to use per node.

--threads-multiprocess integer The number of threads to use per process.

--threads-singleprocess integer The number of threads to use when running
a single process (for pre-processing and �lter-
ing).

101

Chapter A

A.4 bundle_adjust

The bundle_adjust program performs bundle adjustment on a given set of images and cameras. An
introduction to bundle adjustment can be found in chapter 8, with an example of how to use this program
in section 8.2.

This tool can use several algorithms for bundle adjustment. The default is to use Google's Ceres Solver
(http://ceres-solver.org/).

Usage:

bundle_adjust <images> <cameras> <optional ground control points> \

-o <output prefix> [options]

Example (for ISIS):

bundle_adjust file1.cub file2.cub file3.cub -o results/run

Example (for Digital Globe Earth data, using ground control points):

bundle_adjust file1.tif file2.tif file1.xml file2.xml gcp_file.gcp \

--datum WGS_1984 -o results/run

Example (for generic pinhole camera data, using estimated camera positions):

bundle_adjust file1.JPG file2.JPG file1.tsai file2.tsai -o results/out \

-t pinhole --local-pinhole --datum WGS_1984 --camera-positions nav_data.csv \

--csv-format "1:file 6:lat 7:lon 9:height_above_datum"

The stereo program can then be told to use the adjusted cameras via the option --bundle-adjust-prefix.

Table A.5: Command-line options for bundle_adjust

Option Description

--help|-h Display the help message.

--output-prefix|-o filename Pre�x for output �lenames.

--bundle-adjuster string [default: Ceres] Choose a solver from: Ceres, RobustSparse,
RobustRef, Sparse, Ref.

--cost-function string [default: Cauchy] Choose a cost function from: Cauchy, Pseu-
doHuber, Huber, L1, L2.

--robust-threshold double(=0.5) Set the threshold for robust cost functions.
Increasing this makes the solver focus harder
on the larger errors.

--datum string Use this datum (needed only if ground con-
trol points are used). Options: WGS_1984,
D_MOON (1,737,400 meters), D_MARS
(3,396,190 meters), MOLA (3,396,000 me-
ters), NAD83, WGS72, and NAD27. Also
accepted: Earth (=WGS_1984), Mars
(=D_MARS), Moon (=D_MOON).

102

http://ceres-solver.org/

Tools

--semi-major-axis double Explicitly set the datum semi-major axis in
meters (needed only if ground control points
are used).

--semi-minor-axis double Explicitly set the datum semi-minor axis in
meters (needed only if ground control points
are used).

--session-type|-t pinhole|isis|dg|rpc Select the stereo session type to use for pro-
cessing. Usually the program can select this
automatically by the �le extension.

--min-matches integer(=30) Set the minimum number of matches between
images that will be considered.

--max-iterations integer(=100) Set the maximum number of iterations.

--overlap-limit integer(=0) Limit the number of subsequent images to
search for matches to the current image to
this value. By default try to match all im-
ages.

--camera-weight double(=1.0) The weight to give to the constraint that
the camera positions/orientations stay close
to the original values (only for the Ceres
solver). A higher weight means that the val-
ues will change less, a lower weight means
more change.

--ip-per-tile int How many interest points to detect in each
10242 image tile (default: automatic deter-
mination).

--ip-detect-method string [default: OBAloG] Choose an interest point detection method
from: 0=OBAloG, 1=SIFT, 2=ORB.

--local-pinhole Optimize processing for inputs which are lo-
cal coordinate pinhole models. Also writes
out a standalone .tsai camera model �le in-
stead of adjust �les.

--camera-positions filename CSV �le containing estimated positions of
each camera. Only used with the local-
pinhole setting to initialize global camera co-
ordinates. If used, the csv-format setting
must also be set. The "�le" �eld is searched
for strings that are found in the input image
�les to match locations to cameras.

103

Chapter A

--csv-format string Specify the format of input CSV �les as
a list of entries column_index:column_type
(indices start from 1). Examples: '1:x
2:y 3:z 4:�le' (a Cartesian coordinate sys-
tem with origin at planet center is as-
sumed, with the units being in meters), '5:lon
6:lat 7:radius_m 2:�le' (longitude and lat-
itude are in degrees, the radius is mea-
sured in meters from planet center), '6:�le
3:lat 2:lon 1:height_above_datum', '1:east-
ing 2:northing 3:height_above_datum' (need
to set --csv-proj4; the height above datum
is in meters). Can also use radius_km for col-
umn_type, when it is again measured from
planet center.

--csv-proj4 string The PROJ.4 string to use to interpret the en-
tries in input CSV �les, if those entries con-
tain easting, northing, and height above da-
tum.

--position-filter-dist double(=-1.0) If estimated camera positions are used, this
option can be used to set a threshold distance
in meters between the cameras. If any pair of
cameras is farther apart than this distance,
the tool will not attempt to �nd matching
interest points between those two cameras.

-min-triangulation-angle double(=0.1) The minimum angle, in degrees, at which rays
must meet at a triangulated point to accept
this point as valid.

--lambda double Set the initial value of the LM parameter
lambda (ignored for the Ceres solver).

--threads integer(=0) Set the number threads to use. 0 means use
the default de�ned in the program or in the
.vwrc �le.

--report-level|-r integer=(10) Use a value >= 20 to get increasingly more
verbose output.

The bundle_adjust program will save the obtained adjustments (rotation and translation) for each camera
in plain text �les whose names start with the speci�ed output pre�x. This pre�x can then be passed to
stereo via the option --bundle-adjust-prefix.

A.4.1 Ground control points

A number of plain-text �les containing ground control points (GCP) can be passed as inputs to bundle_adjust.

These can either be created by hand, or using stereo_gui (section A.2.2).

A GCP �le must end with a .gcp extension, and contain one ground control point per line. Each line must
have the following �elds:

• ground control point id (integer)

104

Tools

• latitude (in degrees)

• longitude (in degrees)

• height above datum (in meters), with the datum itself speci�ed separately

• x, y, z standard deviations (three positive �oating point numbers, smaller values suggest more reliable
measurements)

On the same line, for each image in which the ground control point is visible there should be:

• image �le name

• column index in image (�oat)

• row index in image (�oat)

• column and row standard deviations (two positive �oating point numbers, smaller values suggest more
reliable measurements)

The �elds can be separated by spaces or commas. Here is a sample representation of a ground control point
measurement:

5 23.7 160.1 427.1 1.0 1.0 1.0 image1.tif 124.5 19.7 1.0 1.0 image2.tif 254.3 73.9 1.0 1.0

A.5 point2dem

The point2dem program produces a GeoTIFF terrain model and/or an orthographic image from a set of
point clouds. The clouds can be created by the stereo command, or be in LAS or CSV format.

Example:
point2dem output-prefix -PC.tif -o stereo/filename \

--nodata-value -10000 -n

This produces a digital elevation model. The program will infer the spheroid (datum) and the projection to
use from the input images, if that information is present. Otherwise these can be set with -r and --t_srs.

Here, pixels with no data will be set to a value of -10000. Unless the input images have projection
information, the resulting DEM will be saved in a simple cylindrical map-projection. The DEM is stored
by default as a one channel, 32-bit �oating point GeoTIFF �le.

The -n option creates an 8-bit, normalized version of the DEM that can be easily loaded into a standard
image viewing application for debugging.

Another example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--orthoimage output-prefix -L.tif

This command takes the left input image and orthographically projects it onto the 3D terrain produced
by the Stereo Pipeline. The resulting *-DRG.tif �le will be saved as a GeoTIFF image with the same
geoheader as the DEM.

Here we have explicitly speci�ed the spheroid (-r moon), rather than have it inferred automatically. The
Moon spheroid will have a radius of 1737.4 km.

In the following example the point cloud is very close to the South Pole of the Moon, and for that reason
we use the stereographic projection:

105

Chapter A

point2dem -r moon --stereographic --proj-lon 0 --proj-lat -90 output-prefix-PC.tif

Multiple point clouds can be passed as inputs, to be combined into a single DEM. If it is desired to use the
--orthoimage option as above, the clouds need to be speci�ed �rst, followed by the L.tif images. Here is
an example, which combines together LAS and CSV point clouds together with an output �le from stereo:

point2dem in1.las in2.csv output-prefix-PC.tif -o combined \

--dem-spacing 0.001 --nodata-value -32768

A.5.1 Comparing with MOLA Data

When comparing the output of point2dem to laser altimeter data, like MOLA, it is important to understand
the di�erent kinds of data that are being discussed. By default, point2dem returns planetary radius values
in meters. These are often large numbers that are di�cult to deal with. If you use the -r mars option, the
output terrain model will be in meters of elevation with reference to the IAU reference spheroid for Mars:
3,396,190 m. So if a post would have a radius value of 3,396,195 m, in the model returned with the -r

mars option, that pixel would just be 5 m.

You may want to compare the output to MOLA data. MOLA data is released in three `�avors,' namely:
Topography, Radius, and Areoid. The MOLA Topography data product that most people use is just the
MOLA Radius product with the MOLA Areoid product subtracted. Additionally, it is important to note
that all of these data products have a reference value subtracted from them. The MOLA reference value is
NOT the IAU reference value, but 3,396,000 m.

In order to compare with the MOLA data, you can do one of two di�erent things. You could operate purely
in radius space, and have point2dem create radius values that are directly comparable to the MOLA radius
data. You can do this by having point2dem subtract the MOLA reference value, by using either -r mola

or setting --semi-major-axis 3396000 and --semi-minor-axis 3396000.

Alternatively, to get values that are directly comparable to MOLA Topography data, you'll need to run
point2dem with either -r mars or -r mola, then run the ASP tool dem_geoid (section A.8). This program
will convert the DEM height values from being relative to the IAU reference spheroid or the MOLA spheroid
to being relative to the MOLA Areoid.

The newly obtained DEM will inherit the datum from the unadjusted DEM, so it could be either of the two
earlier encountered radii, but of course the heights in it will be in respect to the areoid, not to this datum.
It is important to note that one cannot tell from inspecting a DEM if it was adjusted to be in respect to
the areoid or not, so there is the potential of mixing up adjusted and unadjusted terrain models.

A.5.2 Post Spacing

Recall that stereo creates a point cloud �le as its output and that you need to use point2dem on to create
a GeoTIFF that you can use in other tools. The point cloud �le is the result of taking the image-to-image
matches (which were created from the kernel sizes you speci�ed, and the subpixel versions of the same, if
used) and projecting them out into space from the cameras, and arriving at a point in real world coordinates.
Since stereo does this for every pixel in the input images, the default value that point2dem uses (if you
don't specify anything explicitly) is the input image scale, because there's an `answer' in the point cloud
�le for each pixel in the original image.

However, as you may suspect, this is probably not the best value to use because there really isn't that
much `information' in the data. The true `resolution' of the output model is dependent on a whole bunch of

106

Tools

things (like the kernel sizes you choose to use) but also can vary from place to place in the image depending
on the texture.

The general `rule of thumb' is to produce a terrain model that has a post spacing of about 3x the input
image ground scale. This is based on the fact that it is nearly impossible to uniquely identify a single pixel
correspondence between two images, but a 3x3 patch of pixels provides improved matching reliability. As
you go to numerically larger post-spacings on output, you're averaging more point data (that is probably
spatially correlated anyway) together.

So you can either use the --dem-spacing argument to point2dem to do that directly, or you can use your
favorite averaging algorithm to reduce the point2dem-created model down to the scale you want.

If you attempt to derive science results from an ASP-produced terrain model with the default DEM spacing,
expect serious questions from reviewers.

A.5.3 Using with LAS or CSV Clouds

The point2dem program can take as inputs point clouds in LAS and CSV formats. These di�er from point
clouds created by stereo by being, in general, not uniformly distributed. It is suggested that the user pick
carefully the output resolution for such �les (--dem-spacing). If the output DEM turns out to be sparse, the
spacing could be increased, or one could experiment with increasing the value of --search-radius-factor,
which will �ll in small gaps in the output DEM by searching further for points in the input clouds.

It is expected that the input LAS �les have spatial reference information such as WKT data. Otherwise it
is assumed that the points are raw x, y, z values in meters in reference to the planet center.

Unless the output projection is explicitly set when invoking point2dem, the one from the �rst LAS �le will
be used.

For LAS or CSV clouds it is not possible to generate intersection error maps or ortho images.

For CSV point clouds, the option --csv-format must be set. If such a cloud contains easting, northing, and
height above datum, the option --csv-proj4 containing a PROJ.4 string needs to be speci�ed to interpret
this data (if the PROJ.4 string is set, it will be also used for output DEMs, unless --t_srs is speci�ed).

Table A.6: Command-line options for point2dem

Options Description

--help|-h Display the help message.

--nodata-value float(=-3.40282347e+38) Set the nodata value.

--use-alpha Create images that have an alpha channel.

--normalized|-n Also write a normalized version of the DEM (for de-
bugging).

--orthoimage Write an orthoimage based on the texture �les passed
in as inputs (after the point clouds).

--errorimage Write an additional image whose values represent the
triangulation error in meters.

--output-prefix|-o output-prefix Specify the output pre�x.

--output-filetype|-t type(=tif) Specify the output �le type.

--x-offset float(=0) Add a horizontal o�set to the DEM.

--y-offset float(=0) Add a horizontal o�set to the DEM.

--z-offset float(=0) Add a vertical o�set to the DEM.

--rotation-order order(=xyz) Set the order of an Euler angle rotation applied to the
3D points prior to DEM rasterization.

107

Chapter A

--phi-rotation float(=0) Set a rotation angle phi.

--omega-rotation float(=0) Set a rotation angle omega.

--kappa-rotation float(=0) Set a rotation angle kappa.

--t_srs string Specify the output projection (PROJ.4 string).

--t_projwin xmin ymin xmax ymax The output DEM will have corners with these georef-
erenced coordinates.

--datum string Set the datum. This will override the datum from
the input images and also --t_srs, --semi-major-
axis, and --semi-minor-axis. Options: WGS_1984,
D_MOON (1,737,400 meters), D_MARS (3,396,190
meters), MOLA (3,396,000 meters), NAD83, WGS72,
and NAD27. Also accepted: Earth (=WGS_1984),
Mars (=D_MARS), Moon (=D_MOON).

--reference-spheroid string This is identical to the datum option.

--semi-major-axis float(=0) Explicitly set the datum semi-major axis in meters.

--semi-minor-axis float(=0) Explicitly set the datum semi-minor axis in meters.

--sinusoidal Save using a sinusoidal projection.

--mercator Save using a Mercator projection.

--transverse-mercator Save using a transverse Mercator projection.

--orthographic Save using an orthographic projection.

--stereographic Save using a stereographic projection.

--oblique-stereographic Save using an oblique stereographic projection.

--gnomonic Save using a gnomonic projection.

--lambert-azimuthal Save using a Lambert azimuthal projection.

--utm zone Save using a UTM projection with the given zone.

--proj-lat float The center of projection latitude (if applicable).

--proj-lon float The center of projection longitude (if applicable).

--proj-scale float The projection scale (if applicable).

--false-northing float The projection false northing (if applicable).

--false-easting float The projection false easting (if applicable).

--dem-spacing|-s float(=0) Set output DEM resolution (in target georeferenced
units per pixel). If not speci�ed, it will be computed
automatically (except for LAS and CSV �les). Multi-
ple spacings can be set (in quotes) to generate multiple
output �les. This is the same as the --tr option.

--search-radius-factor float(=0) Multiply this factor by dem-spacing to get the search
radius. The DEM height at a given grid point is ob-
tained as a weighted average of heights of all points
in the cloud within search radius of the grid point,
with the weights given by a Gaussian. Default search
radius: max(dem-spacing, default_dem_spacing), so
the default factor is about 1.

108

Tools

--csv-format string Specify the format of input CSV �les as a list of en-
tries column_index:column_type (indices start from
1). Examples: '1:x 2:y 3:z' (a Cartesian coordi-
nate system with origin at planet center is assumed,
with the units being in meters), '5:lon 6:lat 7:ra-
dius_m' (longitude and latitude are in degrees, the
radius is measured in meters from planet center), '3:lat
2:lon 1:height_above_datum', '1:easting 2:northing
3:height_above_datum' (need to set --csv-proj4;
the height above datum is in meters). Can also use
radius_km for column_type, when it is again mea-
sured from planet center.

--csv-proj4 string The PROJ.4 string to use to interpret the entries in
input CSV �les, if those entries contain easting, nor-
thing, and height above datum.

--rounding-error

float(=1/210=0.0009765625)
How much to round the output DEM and errors, in
meters (more rounding means less precision but po-
tentially smaller size on disk). The inverse of a power
of 2 is suggested.

--dem-hole-fill-len int(=0) Maximum dimensions of a hole in the output DEM to
�ll in, in pixels.

--orthoimage-hole-fill-len int(=0) Maximum dimensions of a hole in the output orthoim-
age to �ll in, in pixels.

--remove-outliers-params pct (float)

factor (float) [default: 75.0 3.0]

Outlier removal based on percentage. Points with tri-
angulation error larger than pct-th percentile times
factor will be removed as outliers.

--max-valid-triangulation-error

float(=0)

Outlier removal based on threshold. Points with tri-
angulation error larger than this (in meters) will be
removed from the cloud.

--median-filter-params window_size (int)

threshold (double)

If the point cloud height at the current point di�ers
by more than the given threshold from the median of
heights in the window of given size centered at the
point, remove it as an outlier. Use for example 11 and
40.0.

--erode-length length (int) Erode input point clouds by this many pixels at bound-
ary (after outliers are removed, but before �lling in
holes).

--use-surface-sampling [default:

false]

Use the older algorithm, interpret the point cloud as a
surface made up of triangles and sample it (prone to
aliasing).

--fsaa float(=3) Oversampling amount to perform antialiasing. Ob-
solete, can be used only in conjunction with
--use-surface-sampling.

--threads int(=0) Select the number of processors (threads) to use.

--no-bigtiff Tell GDAL to not create bigti�s.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

109

Chapter A

A.6 point2mesh

The point2mesh tool produces a mesh surface that can be visualized in osgviewer, which is a standard 3D
viewing application that is part of the open source OpenSceneGraph package. This viewer is bundled with
Stereo Pipeline. 1

Unlike DEMs, the 3D mesh is not meant to be used as a �nished scienti�c product. Rather, it can be used
for fast visualization to create a 3D view of the generated terrain.

The point2mesh program requires a point cloud �le or a DEM, and an optional texture �le. For example, it
can be used with output-prefix -PC.tif and output-prefix -L.tif, as output by stereo, or otherwise
with output-prefix -DEM.tif and output-prefix -DRG.tif, with the latter two output by point2dem.

When a texture �le is not provided, a 1D texture is applied in the local Z direction that produces a rough
rendition of a contour map. In either case, point2mesh will produce a output-prefix.osgb �le that
contains the 3D model in OpenSceneGraph format.

Two options for osgviewer bear pointing out: the -l �ag indicates that synthetic lighting should be
activated for the model, which can make it easier to see �ne detail in the model by providing some real-
time, interactive hillshading. The -s �ag sets the sub-sampling rate, and dictates the degree to which the
3D model should be simpli�ed. For 3D reconstructions, this can be essential for producing a model that
can �t in memory. The default value is 10, meaning every 10th point is used in the X and Y directions. In
other words that mean only 1/102 of the points are being used to create the model. Adjust this sampling
rate according to how much detail is desired, but remember that large models will impact the frame rate
of the 3D viewer and a�ect performance.

Examples:

point2mesh -s 2 -l output-prefix-PC.tif output-prefix-L.tif

point2mesh -s 2 -l output-prefix-DEM.tif output-prefix-DRG.tif

To view the resulting output-prefix.osgb �le use osgviewer.

Fullscreen:
> osgviewer output-prefix.osgb

In a window:
> osgviewer output-prefix.osgb --window 50 50 1000 1000

Be sure to turn on lightning as soon as the model is loaded, by pressing on �L�. In addition, the keys T, W,
and F can be used to toggle on and o� texture, wireframe, and full-screen modes. The left, middle, and
right mouse buttons control rotation, panning, and zooming of the model.

Table A.7: Command-line options for point2mesh

Options Description

--help|-h Display the help message.

--simplify-mesh float Run OSG Simpli�er on mesh, 1.0 = 100%.

--smooth-mesh Run OSG Smoother on mesh

--use-delaunay Uses the delaunay triangulator to create a surface from the
point cloud. This is not recommended for point clouds with
noise issues.

--step|-s integer(=10) Sampling step size for the mesher.

1The full OpenSceneGraph package can be installed separately from http://www.openscenegraph.org/.

110

http://www.openscenegraph.org/

Tools

--input-file pointcloud-file Explicitly specify the input �le.

--output-prefix|-o output-prefix Specify the output pre�x.

--texture-file texture-file Explicitly specify the texture �le.

--output-filetype|-t type(=ive) Specify the output �le type.

--enable-lighting|-l Enables shades and lighting on the mesh.

--center Center the model around the origin. Use this option if you
are experiencing numerical precision issues.

111

Chapter A

A.7 dem_mosaic

The program dem_mosaic takes as input a list of DEM �les, optionally erodes pixels at the DEM boundaries,
and creates a mosaic. By default, it blends the DEMs where they overlap.

Usage:

dem_mosaic [options] <dem files or -l dem_files_list.txt> -o output_file_prefix

The input DEMs can either be set on the command line, or if too many, they can be listed in a text �le
(one per line) and that �le can be passed to the tool.

The output mosaic is written as non-overlapping tiles with desired tile size, with the size set either in pixels
or in georeferenced (projected) units. The default tile size is large enough that normally the entire mosaic
is saved as one tile.

Individual tiles can be saved via the --tile-index option (the tool displays the total number of tiles when
it is being run). As such, separate processes can be invoked for individual tiles for increased robustness and
perhaps speed.

The output mosaic tiles will be named <output pre�x>-tile-<tile index>.tif, where <output pre�x> is an
arbitrary string. For example, if it is set to results/output, all the tiles will be in the results directory.

By the default, the output mosaicked DEM will use the same grid size and projection as the �rst input
DEM. These can be changed via the --tr and --t_srs options.

The default behavior is to blend the DEMs everywhere. If the option --priority-blending-length

integer is invoked, the blending behavior will be di�erent. At any location, the pixel value of the DEM
earliest in the list present at this location will be kept, unless closer to the boundary of that DEM than
this blending length (measured in input DEM pixels), only in the latter case blending will happen. This
mode is useful when blending several high-resolution �foreground� DEMs covering small regions with larger
�background� DEMs covering a larger extent. Then, the pixels from the high-resolution DEMs are more
desirable, yet at their boundary these DEMs should blend into the background.

To obtain smoother blending when the input DEMs are quite di�erent at the boundary, one can increase
--weights-blur-sigma and --weights-exponent. The latter will result in weights growing slower earlier
and faster later. Some experimentation may be necessary, helped for example by examining the weights
used in blending; they can be written out with --save-dem-weight integer .

Instead of blending, dem_mosaic can compute the image of �rst, last, minimum, maximum, mean, standard
deviation, median, and count of all encountered valid DEM heights at output grid points. For the ��rst�
and �last� operations, the order in which DEMs were passed in is used. With any of these options, the
tile names will be adjusted accordingly. It is important to note that with these options blending will not
happen, since it is explicitly requested that particular values of the input DEMs be used.

If the number of input DEMs is very large, the tool can fail as the operating system may refuse to load all
DEMs. In that case, it is suggested to use the parameter --tile-size to break up the output DEM into
several large tiles, and to invoke the tool for each of the output tiles with the option --tile-index. Later,
dem_mosaic can be invoked again to merge these tiles into a single DEM.

Example 1 (erode 3 pixels from input DEMs and blend them):

dem_mosaic --erode-length 3 dem1.tif dem2.tif -o blended

Example 2 (read the DEMs from a list, and apply priority blending):

112

Tools

echo dem1.tif dem2.tif > imagelist.txt

dem_mosaic -l imagelist.txt --priority-blending-length 14 -o priority_blended

Example 3 (Find the mean DEM, no blending is used):

dem_mosaic -l imagelist.txt --mean -o mosaic

Table A.8: Command-line options for dem_mosaic

Options Description

--help|-h Display the help message.

-l | --dem-list-file string Text �le listing the DEM �les to mosaic, one per line.

-o | --output-prefix string Specify the output pre�x.

--tile-size integer(=1000000) The maximum size of output DEM tile �les to write, in pix-
els.

--tile-index integer The index of the tile to save (starting from zero). When
this program is invoked, it will print out how many tiles are
there. Default: save all tiles.

--erode-length integer(=0) Maximum dimensions of a hole in the output DEM to �ll in,
in pixels.

--priority-blending-length integer(=0) If positive, keep unmodi�ed values from the earliest avail-
able DEM at the current location except a band this wide
measured in pixels around its boundary where blending will
happen.

--hole-fill-length integer(=0) Erode input DEMs by this many pixels at boundary before
mosaicking them.

--tr double Output DEM resolution in target georeferenced units per
pixel. Default: use the same resolution as the �rst DEM to
be mosaicked.

--t_srs string Specify the output projection (PROJ.4 string). Default: use
the one from the �rst DEM to be mosaicked.

--t_projwin xmin ymin xmax ymax Limit the mosaic to this region, with the corners given in
georeferenced coordinates (xmin ymin xmax ymax). Max is
exclusive.

--first Keep the �rst encountered DEM value (in the input order).

--last Keep the last encountered DEM value (in the input order).

--min Keep the smallest encountered DEM value.

--max Keep the largest encountered DEM value.

--mean Find the mean DEM value.

--stddev Find the standard deviation of DEM values.

--median Find the median DEM value (this can be memory-intensive,
fewer threads are suggested).

--count Each pixel is set to the number of valid DEM heights at that
pixel.

--georef-tile-size double Set the tile size in georeferenced (projected) units (e.g., de-
grees or meters).

--output-nodata-value double No-data value to use on output. Default: use the one from
the �rst DEM to be mosaicked.

113

Chapter A

--weights-blur-sigma integer (=5) The standard deviation of the Gaussian used to blur the
weights. Higher value results in smoother weights and blend-
ing. Set to 0 to not use blurring.

--weights-exponent integer (=1) The weights used to blend the DEMs should increase away
from the boundary as a power with this exponent. Higher
values will result in smoother but faster-growing weights.

--extra-crop-length integer(=200) Crop the DEMs this far from the current tile (measured in
pixels) before blending them (a small value may result in
artifacts).

--save-dem-weight integer index Save the weight image that tracks how much the input DEM
with given index contributed to the output mosaic at each
pixel (smallest index is 0).

--save-index-map For each output pixel, save the index of the input DEM it
came from (applicable only for --�rst, --last, --min, and -
-max). A text �le with the index assigned to each input
DEM is saved as well.

--threads integer(=4) Set the number of threads to use.

114

Tools

A.8 dem_geoid

This tool takes as input a DEM whose height values are relative to the datum ellipsoid, and adjusts those
values to be relative to the equipotential surface of the planet (geoid on Earth, and areoid on Mars). The
program can also apply the reverse of this adjustment. The adjustment simply subtracts from the DEM
height the geoid height (correcting, if need be, for di�erences in dimensions between the DEM and geoid
datum ellipsoids).

Three geoids and one areoid are supported. The Earth geoids are: EGM96 and EGM2008, relative
to the WGS84 datum ellipsoid (http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.
html, http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html) and NAVD88,
relative to the NAD83 datum ellipsoid (http://www.ngs.noaa.gov/GEOID/GEOID09/).

The Mars areoid is MOLA MEGDR (http://geo.pds.nasa.gov/missions/mgs/megdr.html). When im-
porting it into ASP, we adjusted the areoid height values to be relative to the IAU reference spheroid for
Mars of radius 3,396,190 m, to be consistent with the DEM data produced by ASP. The areoid at that
source was relative to the Mars radius of 3,396,000 m.

Table A.9: Command-line options for dem_geoid

Options Description

--help|-h Display the help message.

--nodata-value float(=-32768) The value of no-data pixels, unless speci�ed in the DEM.

--geoid string Specify the geoid to use for Earth WGS84 DEMs. Options:
EGM96, EGM2008. Default: EGM96.

--output-prefix|-o filename Specify the output �le pre�x.

--double Output using double precision (64 bit) instead of �oat (32
bit).

--reverse-adjustment Go from DEM relative to the geoid/areoid to DEM relative
to the datum ellipsoid.

A.9 dg_mosaic

This tool can be used when processing Digital Globe Imagery (chapter 4). A Digital Globe satellite may
take a picture, and then split it into several images and corresponding camera XML �les. dg_mosaic will
mosaic these images into a single �le, and create the appropriate combined camera XML �le.

Digital Globe camera �les contain, in addition to the original camera models, their RPC approximations
(section 11.11). dg_mosaic outputs both types of combined models. The combined RPC model can be
used to map-project the mosaicked images with the goal of computing stereo from them (section 5.1.6).

The tool needs to be applied twice, for both the left and right image sets.

dg_mosaic can also reduce the image resolution while creating the mosaics (with the camera �les modi�ed
accordingly).

Some older (2009 or earlier) Digital Globe images may exhibit seams upon mosaicking due to inconsistent
image and camera information. The --fix-seams switch can be used to rectify this problem. Its e�ect
should be minimal if such inconsistencies are not present.

Table A.10: Command-line options for dg_mosaic

Options Description

115

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
http://www.ngs.noaa.gov/GEOID/GEOID09/
http://geo.pds.nasa.gov/missions/mgs/megdr.html

Chapter A

--help|-h Display the help message.

--target-resolution Choose the output resolution in meters per pixel on the
ground (note that a coarse resolution may result in alias-
ing).

--reduce-percent integer(=100) Render a reduced resolution image and XML based on this
percentage.

--skip-rpc-gen [default: false] Skip RPC model generation.

--rpc-penalty-weight float(=0.1) The weight to use to penalize higher order RPC coe�cients
when generating the combined RPC model. Higher penalty
weight results in smaller such coe�cients.

--output-prefix string The pre�x for the output .tif and .xml �les.

--band integer Which band to use (for multi-spectral images).

--input-nodata-value float Nodata value to use on input; input pixel values less than or
equal to this are considered invalid.

--output-nodata-value float Nodata value to use on output.

--fix-seams Fix seams in the output mosaic due to inconsistencies be-
tween image and camera data using interest point matching.

--preview Render a small 8 bit png of the input for preview.

-- dry-run|-n Make calculations, but just print out the commands.

116

Tools

A.10 mapproject

The tool mapproject is used to orthorectify (map-project) a camera image onto a DEM. (ASP is able to
use map-projected images to run stereo, section 5.1.6.)

The mapproject program can be run using multiple processes and can be distributed over multiple machines.
This is particularly useful for ISIS cameras, as in that case any single process must use only one thread due
to the limitations of ISIS. The tool splits the image up into tiles, farms the tiles out to sub-processes, and
then merges the tiles into the requested output image. If your image is small, smaller tiles can be used as
well to start more simultaneous processes (parameter --tile-size).

Examples:

mapproject -t isis DEM.tif image.cub output-IMG.tif --ppd 256

mapproject -t rpc DEM.tif image.tif image.xml output-IMG.tif --tr 20

It is very important to pick a good value for the grid size parameter, given by --tr. Ideally it should be
very close to the known image resolution as measured on the ground (in degree or meter units, depending
on the projection).

If the imagery is from Digital Globe, both the exact DG model from the XML �le can be used for map-
projection (-t dg) and its RPC approximation (-t rpc). The former is more accurate but much smaller.

Table A.11: Command-line options for mapproject

Options Description

--help|-h Display the help message.

--nodata-value float(=-32768) No-data value to use unless speci�ed in the input image.

--t_srs Specify the output projection (PROJ.4 string). If not pro-
vided, use the one from the DEM.

--tr float Set the output �le resolution in target georeferenced units
per pixel.

--mpp float Set the output �le resolution in meters per pixel.

--ppd float Set the output �le resolution in pixels per degree.

--session-type|-t pinhole|isis|rpc Select the stereo session type to use for processing. Choose
'rpc' if it is desired to later do stereo with the 'dg' session.

--t_projwin xmin ymin xmax ymax Limit the map-projected image to this region, with the cor-
ners given in georeferenced coordinates (xmin ymin xmax
ymax). Max is exclusive.

--t_pixelwin xmin ymin xmax ymax Limit the map-projected image to this region, with the cor-
ners given in pixels (xmin ymin xmax ymax). Max is exclu-
sive.

--bundle-adjust-prefix string Use the camera adjustment obtained by previously running
bundle_adjust with this output pre�x.

--num-processes Number of parallel processes to use (default program
chooses).

--nodes-list List of available computing nodes.

--tile-size Size of square tiles to break processing up into.

--suppress-output Suppress output from sub-processes.

--threads int(=0) Select the number of processors (threads) to use.

117

Chapter A

--no-bigtiff Tell GDAL to not create bigti�s.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

118

Tools

A.11 disparitydebug

The disparitydebug program produces output images for debugging disparity images created from stereo.
The stereo tool produces several di�erent versions of the disparity map; the most important ending with
extensions *-D.tif and *-F.tif. (see Appendix C for more information.) These raw disparity map �les can
be useful for debugging because they contain raw disparity values as measured by the correlator; however
they cannot be directly visualized or opened in a conventional image browser. The disparitydebug tool
converts a single disparity map �le into two normalized TIFF image �les (*-H.tif and *-V.tif, containing
the horizontal and vertical, or line and sample, components of disparity, respectively) that can be viewed
using any image display program.

The disparitydebug program will also print out the range of disparity values in a disparity map, that can
serve as useful summary statistics when tuning the search range settings in the stereo.default �le.

If the input images are map-projected (georeferenced), the outputs of disparitydebug will also be georef-
erenced.

Table A.12: Command-line options for disparitydebug

Options Description

--help|-h Display the help message

--input-file filename Explicitly specify the input �le

--output-prefix|-o filename Specify the output �le pre�x

--output-filetype|-t type(=tif) Specify the output �le type

--float-pixels Save the resulting debug images as 32 bit �oating point �les
(if supported by the selected �le type)

A.12 orbitviz

Produces a Google Earth Keyhole Markup Language (KML) �le useful for visualizing camera position. The
input for this tool is one or more *.cub �les.

Table A.13: Command-line options for orbitviz

Options Description

--help|-h Display the help message

--output|-o filename(=orbit.kml) Speci�es the output �le name

--scale|-s float(=1) Scale the size of the coordinate axes by this amount. Ex: To
scale axis sizes up to Earth size, use 3.66

--use_path_to_dae_model|-u fullpath Use this dae model to represent camera location. Google
Sketch up can create these.

--load-camera-solve Use a specialized display for showing the results of the
camera_solve tool. When using this option, only pass in
the path to the camera_solve output folder as a positional
argument. Green lines drawn between the camera positions
indicate a successful interest point match between those two
images.

--hide-labels Hide image names unless the camera is highlighted.

119

Chapter A

Figure A.2: Example of a KML visualization produced with orbitviz depicting camera locations for the
Apollo 15 Metric Camera during orbit 33 of the Apollo command module.

120

Tools

A.13 cam2map4stereo.py

This program takes similar arguments as the ISIS3 cam2map program, but takes two input images. With
no arguments, the program determines the minimum overlap of the two images, and the worst common
resolution, and then map-projects the two images to this identical area and resolution.

The detailed reasons for doing this, and a manual step-by-step walkthrough of what cam2map4stereo.py
does is provided in the discussion on aligning images on page 16.

The cam2map4stereo.py is also useful for selecting a subsection and/or reduced resolution portion of the
full image. You can inspect a raw camera geometry image in qview after you have run spiceinit on it,
select the latitude and longitude ranges, and then use cam2map4stereo.py's --lat, --lon, and optionally
--resolution options to pick out just the part you want.

Use the --dry-run option the �rst few times to get an idea of what cam2map4stereo.py does for you.

Table A.14: Command-line options for cam2map4stereo.py

Options Description

--help|-h Display the help message.

--manual Read the manual.

--map=MAP |-m MAP The map�le to use for cam2map.

--pixres=PIXRES |-p PIXRES The pixel resolution mode to use for cam2map.

--resolution=RESOLUTION |-r RESOLUTION Resolution of the �nal map for cam2map.

--interp=INTERP |-i INTERP Pixel interpolation scheme for cam2map.

--lat=LAT |-a LAT Latitude range for cam2map, where LAT is of the form
min:max. So to specify a latitude range between -5 and 10
degrees, it would look like --lat=-5:10.

--lon=LON |-o LON Longitude range for cam2map, where LON is of the form
min:max. So to specify a longitude range between 45 and
47 degrees, it would look like --lon=40:47.

--dry-run|-n Make calculations, and print the cam2map command that
would be executed, but don't actually run it.

--prefix Make all output �les use this pre�x. Default: no pre�x.

--suffix|-s Su�x that gets inserted in the output �le names, defaults to
`map'.

121

Chapter A

A.14 pansharp

This tool reads in a high resolution grayscale �le and a low resolution RGB �le and produces a high
resolution RGB �le. The output image will be at the resolution of the grayscale image and will cover the
region where the two images overlap. Both images must have georeferencing information. This can either
be projection information in the image metadata or it can be a separate Worldview format XML camera
�le containing four ground control points (if using the tool with Digital Globe images).

Usage:
pansharp [options] <grayscale image file> <color image file> <output image file>

Table A.15: Command-line options for pansharp

Options Description

--help Display the help message.

--min-value Manually specify the bottom of the input data range.

--max-value Manually specify the top of the input data range.

--gray-xml Look for georeference data here if not present in the grayscale
image.

--color-xml Look for georeference data here if not present in the RGB
image.

--nodata-value The nodata value to use for the output RGB �le.

A.15 datum_convert

This tool is used to convert a DEM from one datum to another. For example, a UTM zone 10 DEM with
an NAD27 datum can be converted to a UTM zone 10 DEM with a WGS84 datum. This tool does not
convert between projections, another program such as gdalwarp or dem_mosaic should be used for that.
datum_convert performs both horizontal and vertical conversion.

Intuitively, the input and output DEMs should correspond to the same point cloud in 3D space up to the
interpolation errors required to perform the conversion.

Usage:
datum_convert [options] <input dem> <output dem>

Table A.16: Command-line options for datum_convert

Options Description

--help Display the help message.

--output-datum string The datum to convert to. Supported options: WGS_1984,
NAD83, WGS72, and NAD27.

--t_srs string Specify the output datum via the PROJ.4 string.

--nodata-value The value of no-data pixels, unless speci�ed in the DEM.

122

Tools

A.16 point2las

This tool can be used to convert point clouds generated by ASP to the public LAS format for interchange
of 3-dimensional point cloud data.

If the input cloud has a datum, or the --datum option is speci�ed, then the output LAS �le will be created
in respect to this datum. Otherwise raw x, y, z values will be saved.

Table A.17: Command-line options for point2las

Options Description

--help|-h Display the help message.

--datum Create a geo-referenced LAS �le in respect to this da-
tum. Options: WGS_1984, D_MOON (1,737,400 me-
ters), D_MARS (3,396,190 meters), MOLA (3,396,000 me-
ters), NAD83, WGS72, and NAD27. Also accepted: Earth
(=WGS_1984), Mars (=D_MARS), Moon (=D_MOON).

--reference-spheroid string This is identical to the datum option.

--t_srs string Specify the output projection (PROJ.4 string).

--compressed Compress using laszip.

--output-prefix|-o filename Specify the output �le pre�x.

--threads integer(=0) Set the number threads to use. 0 means use the default
de�ned in the program or in the .vwrc �le.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

A.17 pc_align

This tool can be used to align two point clouds using Point-to-Plane or Point-to-Point Iterative Closest Point
(ICP). It uses the libpointmatcher library [26] (https://github.com/ethz-asl/libpointmatcher).

Usage:

pc_align --max-displacement <float> [other options] <reference cloud> <source cloud> \

-o <output prefix>}

An example of using this tool is in section 5.2.5.

Several important things need to be kept in mind if pc_align is to be used successfully and give accurate
results, as described below.

A.17.1 The input point clouds

Due to the nature of ICP, the �rst input point cloud, that is, the reference (�xed) cloud, should be denser
than the second, source (movable) point cloud, to get the most accurate results. This is not a serious
restriction, as one can perform the alignment this way and then simply invert the obtained transform if
desired (pc_align outputs both the direct and inverse transform, and can output the reference point cloud
transformed to match the source and vice-versa).

In many typical applications, the source and reference point clouds are already roughly aligned, but the
source point cloud may cover a larger area than the reference. The user should provide to pc_align the

123

https://github.com/ethz-asl/libpointmatcher

Chapter A

expected maximum distance (displacement) source points may move by as result of alignment, using the
option --max-displacement. This number will help remove source points too far from the reference point
cloud which may not match successfully and may degrade the accuracy. If in doubt, this value can be set
to something large but still reasonable, as the tool is able to throw away a certain number of unmatched
outliers. At the end of alignment, pc_align will display the observed maximum displacement, a multiple
of which can be used to seed the tool in a subsequent run.

The user can choose how many points to pick from the reference and source point clouds to perform the
alignment. The amount of memory and processing time used by pc_align is directly proportional to these
numbers, ideally the more points the better. Pre-cropping to judiciously chosen regions may improve the
accuracy and/or run-time.

A.17.2 Alignment method

Normally Point-to-Plane ICP is more accurate than Point-to-Point, but the latter can be good enough if
the input point clouds have small alignment errors and it is faster and uses less memory as well. The tool
also accepts an option named --highest-accuracy which will compute the normals for Point-to-Plane ICP
at all points rather than about a tenth of them. This option is not necessary most of the time, but may
result in better alignment at the expense of using more memory and processing time.

A.17.3 File formats

The input point clouds can be in one of several formats: ASP's point cloud format (the output of stereo),
DEMs as GeoTIFF or ISIS cub �les, LAS �les, or plain-text CSV �les (with .csv or .txt extension).

By default, CSV �les are expected to have on each line the latitude and longitude (in degrees), and the
height above the datum (in meters), separated by commas or spaces. Alternatively, the user can specify
the format of the CSV �le via the --csv-format option. Entries in the CSV �le can then be (in any order)
(a) longitude, latitude (in degrees), height above datum (in meters), (b) longitude, latitude, distance from
planet center (in meters or km), (c) easting, northing and height above datum (in meters), in this case
a PROJ.4 string must be set via --csv-proj4, (d) Cartesian coordinates (x, y, z) measured from planet
center (in meters). The precise syntax is described in the table below. The tool can also auto-detect the
LOLA RDR PointPerRow format.

Any line in a CSV �le starting with the pound character (#) is ignored.

If none of the input �les have a geoheader with datum information, and the input �les are not in Cartesian
coordinates, the datum needs to be speci�ed via the --datum option, or by setting --semi-major-axis and
--semi-minor-axis.

A.17.4 The alignment transform

The transform obtained by pc_align is output to a text �le as a 4 × 4 matrix with the upper-left 3 × 3
submatrix being the rotation and the top three elements of the right-most column being the translation.
This transform, if applied to the source point cloud, will bring it in alignment with the reference point
cloud. The transform assumes the 3D Cartesian coordinate system with the origin at the planet center.
This matrix can be supplied back to the tool as an initial guess (section A.17.5). The inverse transform is
saved to a �le as well.

The pc_align program outputs the translation component of this transform, de�ned as the vector from
the centroid of the original source points to the centroid of the transformed source points. This translation
component is displayed in three ways (a) Cartesian coordinates with the origin at the planet center, (b) Local

124

Tools

North-East-Down coordinates at the centroid of the original source points, and (c) Latitude-Longitude-
Height di�erences between the two centroids. If the e�ect of the transform is small (e.g., the points moved
by at most several hundred meters) then the representation in the form (b) above is most amenable to
interpretation as it is in respect to cardinal directions and height above ground if standing at a point on
the planet surface.

The rotation + transform itself, with its origin at the center of the planet, can result in large movements
on the planet surface even for small angles of rotation. Because of this it may be di�cult to interpret both
its rotation and translation components.

A.17.5 Applying a previous transform

The transform output by pc_align can be supplied back to the tool as an initial guess via the --initial-transform
option, with the same or di�erent clouds. If it is desired to simply apply this transform to the clouds with-
out further work, one can specify --num-iterations 0. This may be useful, for example, in �rst �nding
the alignment transform over a smaller, more reliable region (e.g., over rock, excluding moving ice), then
extending it over the entire available dataset.

A.17.6 Error metrics and outliers

The tool outputs to CSV �les the lists of errors together with their locations in the source point cloud,
before and after the alignment of source points, where an error is de�ned as the distance from a source
point used in alignment to the closest reference point. The format of output CSV �les is the same as of
input CSV �les, or as given by --csv-format, although any columns of extraneous data in the input �les
are not saved on output.

The program prints to screen and saves to a log �le the 16th, 50th, and 84th error percentiles as well as
the means of the smallest 25%, 50%, 75%, and 100% of the errors.

When the reference point cloud is a DEM, a more accurate computation of the errors from source points to
the reference cloud is used. A source point is projected onto the datum of the reference DEM, its longitude
and latitude are found, then the DEM height at that position is interpolated. That way we determine a
�closest� point on the reference DEM that interprets the DEM not just as a collection of points but rather
as a polyhedral surface going through those points. These errors are what is printed in the statistics. To
instead compute errors as done for other type of point clouds, use the option --no-dem-distances.

By default, when pc_align discards outliers during the computation of the alignment transform, it keeps
the 75% of the points with the smallest errors. As such, a way of judging the e�ectiveness of the tool is to
look at the mean of the smallest 75% of the errors before and after alignment.

A.17.7 Output point clouds and convergence history

The transformed input point clouds (the source transformed to match the reference, and the reference
transformed to match the source) can also be saved to disk if desired. If an input point cloud is in CSV or
ASP point cloud format, the output transformed cloud will be in the same format. If the input is a DEM,
the output will be an ASP point cloud, since a gridded point cloud may not stay so after a 3D transform.
The point2dem program can be used to re-grid the obtained point cloud back to a DEM.

The convergence history for pc_align (the translation and rotation change at each iteration) is saved to
disk and can be used to �ne-tune the stopping criteria.

125

Chapter A

A.17.8 Manual alignment

If automatic alignment fails, for example, if the clouds are too di�erent, or they di�er by a scale factor,
manual alignment can be used instead, either on its own, or as an initial guess for the automatic alignment
transform. For that, the input point clouds should be �rst converted to DEMs using point2dem, unless
in that format already. Then, stereo_gui can be invoked to create point correspondences (interest point
matches) from the reference to the source DEM. Once these correspondences are saved to a match �le,
pc_align can be called with the reference and source DEMs and the --match-file option. This will
compute and save to disk a rotation + translation + scale transform. A subsequent invocation of pc_align,
either with the original clouds or the DEM created from them, can use this transform as an initial guess
(section A.17.5).

A.17.9 Troubleshooting

Remember that �ltering is applied only to the source point cloud. If you have an input cloud with a lot of
noise, make sure it is being used as the source cloud.

If you are not getting good results with pc_align, something that you can try is to convert an input point
cloud into a smoothed DEM. Use point2dem to do this and set --search-radius-factor if needed to �ll
in holes in the DEM. For some input data this can signi�cantly improve alignment accuracy.

Table A.18: Command-line options for pc_align

Options Description

--help|-h Display the help message.

--threads integer(=0) Set the number threads to use. 0 means use the default
as set by OpenMP. Only some parts of the algorithm
are multi-threaded.

--initial-transform string The �le containing the rotation + translation trans-
form to be used as an initial guess. It can come from
a previous run of the tool.

--num-iterations default: 1000 Maximum number of iterations.

--diff-rotation-error default: 10−8 Change in rotation amount below which the algorithm
will stop (if translation error is also below bound), in
degrees.

--diff-translation-error default: 10−3 Change in translation amount below which the algo-
rithm will stop (if rotation error is also below bound),
in meters.

--max-displacement float Maximum expected displacement of source points as
result of alignment, in meters (after the initial guess
transform is applied to the source points). Used for
removing gross outliers in the source (movable) point
cloud.

--outlier-ratio default: 0.75 Fraction of source (movable) points considered inliers
(after gross outliers further than max-displacement
from reference points are removed).

--max-num-reference-points default: 108 Maximum number of (randomly picked) reference
points to use.

--max-num-source-points default: 105 Maximum number of (randomly picked) source points
to use (after discarding gross outliers).

126

Tools

--alignment-method default:

point-to-plane

The type of iterative closest point method to use.
[point-to-plane, point-to-point]

--highest-accuracy Compute with highest accuracy for point-to-plane (can
be much slower).

--datum string Use this datum for CSV �les. Options: WGS_1984,
D_MOON (1,737,400 meters), D_MARS (3,396,190
meters), MOLA (3,396,000 meters), NAD83, WGS72,
and NAD27. Also accepted: Earth (=WGS_1984),
Mars (=D_MARS), and Moon (=D_MOON).

--semi-major-axis float Explicitly set the datum semi-major axis in meters.

--semi-minor-axis float Explicitly set the datum semi-minor axis in meters.

--csv-format string Specify the format of input CSV �les as a list of en-
tries column_index:column_type (indices start from
1). Examples: '1:x 2:y 3:z' (a Cartesian coordi-
nate system with origin at planet center is assumed,
with the units being in meters), '5:lon 6:lat 7:ra-
dius_m' (longitude and latitude are in degrees, the
radius is measured in meters from planet center), '3:lat
2:lon 1:height_above_datum', '1:easting 2:northing
3:height_above_datum' (need to set --csv-proj4;
the height above datum is in meters). Can also use
radius_km for column_type, when it is again mea-
sured from planet center.

--csv-proj4 string The PROJ.4 string to use to interpret the entries in
input CSV �les, if those entries contain easting, nor-
thing, and height above datum.

--output-prefix|-o filename Specify the output �le pre�x.

--compute-translation-only Compute the transform from source to reference point
cloud as a translation only (no rotation).

--save-transformed-source-points Apply the obtained transform to the source points so
they match the reference points and save them.

--save-inv-transformed-reference-points Apply the inverse of the obtained transform to the
reference points so they match the source points and
save them.

--no-dem-distances For reference point clouds that are DEMs, don't take
advantage of the fact that it is possible to interpolate
into this DEM when �nding the closest distance to it
from a point in the source cloud (the text above has
more detailed information).

--match-file Compute a translation + rotation + scale transform
from the source to the reference point cloud using man-
ually selected point correspondences (obtained for ex-
ample using stereo_gui).

--config-file file.yaml This is an advanced option. Read the alignment pa-
rameters from a con�guration �le, in the format ex-
pected by libpointmatcher, over-riding the command-
line options.

127

Chapter A

A.18 pc_merge

This is a simple tool for combining multiple ASP-generated point cloud �les into a single concatenated
�le. The output �le will be �oat32 unless the input images are �oat64 or the user has speci�ed the �oat64
option.

pc_merge can merge clouds with 1, 3, 4, and 6 bands. In particular, it can merge output-pre�x -L.tif images
created by stereo. This is useful if it is desired to create an ortho-image from a merged cloud with
point2dem. In that case, one can invoke pc_merge on individual �L� �les to create a merged texture �le to
pass to point2dem together with the merged point cloud tile.

Usage:
pc_merge [options] [required output file option] <multiple point cloud files>

Table A.19: Command-line options for pc_merge

Options Description

--help Display the help message.

--write-double|-d Force output �le to be �oat64 instead of �oat32.

--output-file|-o Specify the output �le (required).

A.19 wv_correct

An image taken by one of Digital Globe's World View satellite cameras is formed of several blocks as tall as
the image, mosaicked from left to right, with each block coming from an individual CCD sensor [12]. Either
due to imperfections in the camera or in the subsequent processing the image blocks are o�set in respect
to each other in both row and column directions by a subpixel amount. These so-called CCD boundary
artifacts are not visible in the images but manifest themselves as discontinuities in the the DEMs obtained
with ASP.

The tool named wv_correct is able to signi�cantly attenuate these artifacts (see Figure 4.2 in the Digital
Globe tutorial for an example). This tool should be used on raw Digital Globe images before calling
dg_mosaic and mapproject.

It is important to note that both the positions of the CCD o�sets and the o�set amounts were determined
empirically without knowledge of Digital Globe's mosaicking process; this is why we are not able to remove
these artifacts completely.

Presently, wv_correct works for WV01 images for TDI of 8, 16, 32, 48, 56 and 64, and for WV02 images
for TDI of 8, 16, 48, and 64 (both the forward and reverse scan directions for both cameras). In addition,
the WV02 TDI 32 forward scan direction is supported. These are by far the most often encountered TDI.
We plan to extend the tool to support other TDI when we get more such data to be able to compute the
corrections. For WV03 images, CCD artifacts appear to not be signi�cant, hence no corrections are planned
for the near future.

Usage:
wv_correct [options] <input image> <input camera model> <output image>

Table A.20: Command-line options for wv_correct

Options Description

128

Tools

--help|-h Display the help message.

--threads integer(=0) Set the number threads to use. 0 means use the default
de�ned in the program or in the .vwrc �le.

A.20 lronac2mosaic.py

This tool takes in two LRONAC �les (M*LE.IMG and M*RE.IMG) and produces a single noproj mosaic
composed of the two inputs. It performs the following operations in this process: lronac2isis, lronaccal,
lronacecho, spiceinit, noproj, and handmos. The o�sets used in handmos are calculated using an ASP
internal tool called lronacjitreg and is similar in functionality to the ISIS command hijitreg. O�sets
need to be calculated via feature measurements in image to correct for imperfections in camera pointing.
The angle between LE and RE optics changes slightly with spacecraft temperature.

Optionally, lronac2mosiac.py can be given many IMG �les all at once. The tool will then look at image
names to determine which should be paired and mosaicked. The tool will also spawn multiple processes
of ISIS commands were possible to �nish the task faster. The max number of simultaneous processes is
limited by the --threads option.

Usage:
lronac2mosaic.py [options]

Table A.21: Command-line options for lronac2mosaic.py

Options Description

--manual Display the help message.

--output-dir|-o Set the output folder (default is input folder).

--stop-at-no-proj Stops processing after the noproj steps are complete.

--resume-at-no-proj Restarts processing using the results from 'stop-at-no-proj.

--threads|-t Specify the number of threads to use.

--keep|-k Keep all intermediate �les.

A.21 image_calc

This tool can be used to perform simple, per-pixel arithmetic on one or more input images. An arithmetic
operation speci�ed on the command line is parsed and applied to each pixel, then the result is written to
disk. The tool supports multiple input images but each must be the same size and data type. Input images
are restricted to one channel.

The following symbols are allowed in the arithmetic string: +, -, *, /, (), min(), max(), pow(), abs(), and
var_N where N is the index of one of the input images. An example arithmetic string is: "-abs(var_2)
+ min(58, var_1, var_3) / 2". The tool respects the normal PEMDAS order of operations except that it
parses equal priority operations from right to left, not the expected left to right. Parentheses can be used
to enforce any preferred order of evaluation.

Usage:

image_calc [options] -c <arithmetic formula> <inputs> -o <output>

Example:

129

Chapter A

image_calc -c "pow(var_0/3.0, 1.1)" input_image.tif -o output_image.tif -d float32

Table A.22: Command-line options for image_calc

Options Description

--help Display the help message.

--calc|-c The arithmetic string in quotes (required).

--output-data-type|-d The data type of the output �le (default is �oat64).

--input-nodata-value Set an override nodata value for the input images.

--output-nodata-value Manually specify a nodata value for the output image (de-
fault is data type min).

--output-file|-o Specify the output �le instead of using a default.

A.22 colormap

The colormap tool reads a DEM and writes a corresponding color-coded height image that can be used for
visualization.

Usage:
colormap [options] <input DEM>

Table A.23: Command-line options for colormap

Option Description

--help Display a help message.

-s [--shaded-relief-file] arg Specify a shaded relief image (grayscale) to apply to the
colorized image.

-o [--output-file] arg Specify the output �le.

--colormap-style arg Specify the colormap style. Options: binary-red-blue (de-
fault), jet, or the name of a �le having the colormap, similar
to the �le used by gdaldem.

--nodata-value arg Remap the DEM default value to the min altitude value.

--min arg Minimum height of the color map.

--max arg Maximum height of the color map.

--moon Set the min and max height to good values for the Moon.

--mars Set the min and max height to good values for Mars.

--legend Generate an unlabeled legend, saved as "legend.png".

A.23 hillshade

The hillshade tool reads in a DEM and outputs an image of that DEM as though it were a three-
dimensional surface, with every pixel shaded as though it were illuminated by a light from a speci�ed
location.

Table A.24: Command-line options for hillshade

Option Description

130

Tools

--help Display a help message

--input-file arg Explicitly specify the input �le

-o [--output-file] arg Specify the output �le

-a [--azimuth] arg (=300) Sets the direction that the light source is coming from (in degrees).
Zero degrees is to the right, with positive degree counter-clockwise.

-e [--elevation] arg (=20) Set the elevation of the light source (in degrees)

-s [--scale] arg (=0) Set the scale of a pixel (in the same units as the DTM height values

--nodata-value arg Remap the DEM default value to the min altitude value

--blur arg Pre-blur the DEM with the speci�ed sigma

A.24 image2qtree

image2qtree turns a georeferenced image (or images) into a quadtree with geographical metadata. For
example, it can output a kml �le for viewing in Google Earth.

Table A.25: Command-line options for image2qtree

Option Description

General Options

--help Display a help message

-o [--output-name] arg Specify the base output directory

-q [--quiet] Quiet output

-v [--verbose] Verbose output

--cache arg (=1024) Cache size, in megabytes

Input Options

--force-wgs84 Use WGS84 as the input images' geographic
coordinate systems, even if they're not (old
behavior)

--pixel-scale arg (=1) Scale factor to apply to pixels

--pixel-offset arg (=0) O�set to apply to pixels

--normalize Normalize input images so that their full dy-
namic range falls in between [0,255]

Output Options

-m [--output-metadata] arg (=none) Specify the output metadata type. One of
[kml, tms, uniview, gmap, celestia, none]

--file-type arg (=png) Output �le type

--channel-type arg (=uint8) Output (and input) channel type. One of
[uint8, uint16, int16, �oat]

--module-name arg (=marsds) The module where the output will be placed.
Ex: marsds for Uniview, or Sol/Mars for Ce-
lestia

--terrain Outputs image �les suitable for a Uniview
terrain view. Implies output format as PNG,
channel type uint16. Uniview only

--jpeg-quality arg (=0.75) JPEG quality factor (0.0 to 1.0)

--png-compression arg (=3) PNG compression level (0 to 9)

--palette-file arg Apply a palette from the given �le

131

Chapter A

--palette-scale arg Apply a scale factor before applying the
palette

--palette-offset arg Apply an o�set before applying the palette

--tile-size arg (=256) Tile size, in pixels

--max-lod-pixels arg (=1024) Max LoD in pixels, or -1 for none (kml only)

--draw-order-offset arg (=0) O�set for the <drawOrder> tag for this over-
lay (kml only)

--composite-multiband Composite images using multi-band blending

--aspect-ratio arg (=1) Pixel aspect ratio (for polar overlays; should
be a power of two)

Projection Options

--north arg The northernmost latitude in degrees

--south arg The southernmost latitude in degrees

--east arg The easternmost longitude in degrees

--west arg The westernmost longitude in degrees

--force-wgs84 Assume the input images' geographic coordi-
nate systems are WGS84, even if they're not
(old behavior)

--sinusoidal Assume a sinusoidal projection

--mercator Assume a Mercator projection

--transverse-mercator Assume a transverse Mercator projection

--orthographic Assume an orthographic projection

--stereographic Assume a stereographic projection

--lambert-azimuthal Assume a Lambert azimuthal projection

--lambert-conformal-conic Assume a Lambert Conformal Conic projec-
tion

--utm arg Assume UTM projection with the given zone

--proj-lat arg The center of projection latitude (if applica-
ble)

--proj-lon arg The center of projection longitude (if appli-
cable)

--proj-scale arg The projection scale (if applicable)

--std-parallel1 arg Standard parallels for Lambert Conformal
Conic projection

--std-parallel2 arg Standard parallels for Lambert Conformal
Conic projection

--nudge-x arg Nudge the image, in projected coordinates

--nudge-y arg Nudge the image, in projected coordinates

A.25 geodi�

The geodiff program takes as input two DEMs, and subtracts the second from the �rst. The grid used is
the one from the �rst DEM, so the second one is interpolated into it. The tool can also take the absolute
di�erence of the two DEMs.

It is important to note that the tool is very sensitive to the order of the two DEMs, due to the fact that
the grid comes from the �rst one. Ideally the grid of the �rst DEM would be denser than the one of the
second.

132

Tools

Usage:

> geodiff [options] <dem1> <dem2> [-o output_file_prefix]

Table A.26: Command-line options for geodi�

Option Description

--help|-h Display the help message.

--output-prefix|-o filename Specify the output pre�x.

--absolute Output the absolute di�erence as opposed to
just the di�erence.

--float Output using �oat (32 bit) instead of using
doubles (64 bit).

--nodata-value float(=-32768) The no-data value to use, unless present in
the DEM geoheaders.

--threads integer(=0) Set the number of threads to use. 0 means
use as many threads as there are cores.

--no-bigtiff Tell GDAL to not create bigti�s.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

A.26 sfs

The sfs tool can improve a DEM using shape-from-shading. Examples for how to use it are in chapter 10.

Table A.27: Command-line options for sfs

Option Description

-h | --help Display this help message.

-i | --input-dem string The input DEM to re�ne using SfS.

-o | --output-prefix string Pre�x for output �lenames.

-n | --max-iterations int(=100) Set the maximum number of iterations.

--reflectance-type int(=1) Re�ectance type (0 = Lambertian, 1 = Lunar
Lambertian).

--smoothness-weight double(=0.04) A larger value will result in a smoother solu-
tion.

--coarse-levels int(=0) Solve the problem on a grid coarser than the
original by a factor of 2 to this power, then
re�ne the solution on �ner grids.

--max-coarse-iterations int(=50) How many iterations to do at levels of reso-
lution coarser than the �nal result.

--float-albedo Float the albedo for each pixel. Will give in-
correct results if only one image is present.

--float-exposure Float the exposure for each image. Will give
incorrect results if only one image is present.

--float-cameras Float the camera pose for each image except
the �rst one.

--model-shadows Model the fact that some points on the DEM
are in the shadow (occluded from the sun).

133

Chapter A

--shadow-thresholds string Optional shadow thresholds for the input im-
ages (a list of real values in quotes).

--use-approx-camera-models Use approximate camera models for speed.

--bundle-adjust-prefix string Use the camera adjustments obtained by pre-
viously running bundle_adjust with this out-
put pre�x.

--init-dem-height double Use this value for initial DEM heights. An
input DEM still needs to be provided for geo-
reference information.

--float-dem-at-boundary Allow the DEM values at the boundary of the
region to also �oat (not advised).

--camera-position-step-size int(=1) Larger step size will result in more aggres-
siveness in varying the camera position if it
is being �oated (which may result in a better
solution or in divergence).

--max-height-change int(=0) How much the DEM heights are allowed to
di�er from the initial guess, in meters. The
default is 0, which means this constraint is
not applied.

--height-change-weight int(=0) How much weight to give to the height change
penalty (this penalty will only kick in when
the DEM height changes by more than max-
height-change).

--threads int(=0) Select the number of processors (threads) to
use.

--no-bigtiff Tell GDAL to not create bigti�s.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

A.27 undistort_image

The undistort_image program takes as input an image and a pinhole model .tsai �le describing the image.
The tool will generate a copy of the input image with the lens distortion speci�ed in the pinhole model �le
removed.

Usage:

> undistort_image [options] <input image> <camera model>

Table A.28: Command-line options for undistort_image

Option Description

--help|-h Display the help message.

--output-file|-o filename Specify the output �le.

134

Tools

A.28 camera_calibrate

The camera_calibrate tool can generate camera models suitable for use by camera_solve and other
ASP tools. This tool only solves for intrinsic camera parameters; to obtain the camera pose you should
use the camera_solve tool. This tool is a wrapper around the OpenCV (http://opencv.org/) checker-
board calibration tool which takes care of converting the output into readily usable formats. When you
run the tool, three camera model �les will be created in the output folder: solve_cam_params.txt,
vw_cam_params.tsai, and ocv_cam_params.yml. The �rst �le can be used as a camera calibration �le
for the camera_solve tool. The second �le is a pinhole camera format that is recognized by ASP but
remember that the extrinsic parameters were not solved for so ASP is limited in what it can do with the
camera �le. The last �le contains the camera information as formatted by the OpenCV calibration tool. If
you use the �rst �le as an input to camera_solve you must remember to replace the wildcard image path
in the �le with the one to the images you want to use solve for (as opposed to the checkerboard images).

In order to use this tool you must provide multiple images of the same checkerboard pattern acquired with
the camera you wish to calibrate. When calling the tool you must specify the number of internal square
corners contained in your checkerboard pattern (width and height can be swapped) so that OpenCV knows
what to look for. You must also specify an image wildcard path such as "checkers/image_*.jpg". You
may need to enclose this parameter in quotes so that your command line does not expand the wildcard
before it is passed to the tool. If you do not provide the �box-size parameter the output calibration
numbers will be unitless.

Usage:

> camera_calibrate [options] <output folder> <Board Height> <Board Width> <Image Wildcard> ...

Table A.29: Command-line options for camera_calibrate

Option Description

-h | --help Display this help message.

--overwrite Recompute any intermediate steps already
completed on disk.

--suppress-output Reduce the amount of program console out-
put.

--box-size-cm float The size of the checkerboard squares in cen-
timeters.

--duplicate-files Make a copy of the vw param �le for each
input camera.

A.29 camera_solve

The camera_solve tool generates pinhole sensor models (frame cameras) for input images lacking metadata.
See chapter ?? for an overview an examples of using the tool..

The camera calibration passed with the --calib-file option should be a .tsai pinhole camera model �le in
one of the formats compatible with ASP. Our supported pinhole camera models are described in appendix
D.

You can use a set of estimated camera positions to register camera models in world coordinates. This
method is not as accurate as using ground control points but it may be easier to use. To do this, use the

135

http://opencv.org/

Chapter A

--camera-positions parameter to bundle-adjust via the --bundle-adjust-params option similar to the
example line below. If you see the camera models shifting too far from their starting positions try using
the --camera-weight option to restrain their movement.

--bundle-adjust-params '--camera-positions nav.csv \

--csv-format "1:file 12:lat 13:lon 14:height_above_datum" --camera-weight 1.0'

This tool will generate two .tsai camera model �les in the output folder per input image. The �rst �le,
appended with .tsai, is in a local coordinate system and does not include optimizations for intrinsic param-
eters but it may be useful for debugging purposes. The second �le, appended with .�nal.tsai, contains the
�nal solver results. If ground control points or estimated camera positions were provided then the second
�le will be in a global coordinate system.

Usage:

> camera_solve [options] <output folder> <Input Image 1> <Input Image 2> ...

Table A.30: Command-line options for camera_solve

Option Description

-h | --help Display this help message.

--datum string The datum to use when calibrating. Default
is WGS84.

--calib-file string Path to estimated camera parameters. The
tool works much better if good estimates are
provided!

--gcp-file string Path to a ground control point �le. This al-
lows the tool to generate cameras in a global
coordinate system.

--bundle-adjust-params string Additional parameters (in single quotes) to
pass to the bundle_adjust tool.

--theia-flagfile string Path to a custom Theia �ag�le to use settings
from. File paths speci�ed in this �le are ig-
nored.

--overwrite Recompute any intermediate steps already
completed on disk.

--suppress-output Reduce the amount of program console out-
put.

This tool is a wrapper that relies on on two other tools to operate. The �rst of these is THEIA, as mentioned
earlier, for computing the relative poses of the cameras. ASP's bundle_adjust tool is used to register the
cameras in world coordinates using the ground control points. If the tool does not provide good results
you can customize the parameters being passed to the underlying tools in order to improve the results. For
bundle_adjust options, see the description in this document. For more information about THEIA �ag�le
options see their website or edit a copy of the default �ag�le generated in the output folder

136

Tools

A.30 icebridge_kmz_to_csv

A simple tool for use with data from the NASA IceBridge program. Google Earth compatible .kmz �les
are available at http://asapdata.arc.nasa.gov/dms/missions.html which display the aircraft position
at the point when each DMS frame image was captured. This tool exports those positions into a csv �le
which can be passed into bundle_adjust using the following parameters:

--camera-positions ../camera_positions.csv --csv-format "1:file 2:lon 3:lat 4:height_above_datum"

This may be useful in conjunction with the camera_solve tool to allow conversion of camera positions from
local to global coordinates.

Usage:

> icebridge_kmz_to_csv <input kmz file> <output csv file>

A.31 lvis2kml

A simple tool for use with LVIS (Land, Vegetation, and Ice Sensor) lidar data from the NASA IceBridge
program. Generates a Google Earth compatible .kml �les from either an LVIS data �le (.TXT extension)
or an LVIS boundary �le (.xml extension). Using this tool makes it easy to visualize what region a given
LVIS �le covers and what the shap of its data looks like. If the output path is not passed to the tool it will
generate an output path by appending ".kml" to the input path. This tool requires the simplekml Python
package to run. One way to get this is to install the ASP Python tools, described at the end of section 4.5.

Usage:

> lvis2kml [options] <input path> [output path]

Table A.31: Command-line options for lvis2kml

Option Description

-h | --help Display this help message.

--name string Assign a name to the KML �le.

--color string Draw plots in one of (red | green | blue)

--skip int(=1) When loading a data �le, plot only every N'th
point. Has no e�ect on boundary �les.

A.32 GDAL Tools

ASP distributes in the bin directory the following GDAL tools: gdalinfo, gdal_translate and gdalbuildvrt.
These executables are used by a few ASP Python tools, are compiled with JPEG2000 and BigTIFF support,
and can handle NTF images in addition to most image formats. They can be used to see image statistics,
crop and scale images, and build virtual mosaics respectively. Detailed documentation is available on the
GDAL web site, at http://www.gdal.org/.

137

http://asapdata.arc.nasa.gov/dms/missions.html
http://www.gdal.org/

Chapter A

Figure A.3: Example of KML visualizations produced with lvis2kml. The output from both the boundary
�le (red) and the data �le (green) with a point skip of 500 are shown in this image. The color saturation
of data points is scaled with the elevation such that the points in the �le with the least elevation show up
as white and the highest points show up as the speci�ed color.

138

Appendix B

The stereo.default File

The stereo.default �le contains con�guration parameters that the stereo program uses to process images.
The stereo.default �le is loaded from the current working directory when you run stereo unless you
specify a di�erent �le using the -s option. Run stereo --help for more information. The extension is not
important for this �le.

A sample stereo.default.example �le is included in the examples/ directory of the Stereo Pipeline
software distribution.

As mentioned in section 5.1.4, all the stereo parameters can also be speci�ed on the command line.

Listed below are the parameters used by stereo, grouped by processing stage.

B.1 Preprocessing

alignment-method (= a�neepipolar, homography, epipolar, none) (default = a�neepipolar)

When alignment-method is set to homography, stereo will attempt to pre-align the images by
automatically detecting tie-points between images using a feature based image matching technique.
Tie points are stored in a *.match �le that is used to compute a linear homography transformation
of the right image so that it closely matches the left image. Note: the user may exercise more control
over this process by using the ipfind and ipmatch tools.

When alignment-method is set to affineepipolar, stereo will attempt to pre-align the images by
detecting tie-points, as earlier, and using those to transform the images such that pairs of conjugate
epipolar lines become collinear and parallel to one of the image axes. The e�ect of this is equivalent
to rotating the original cameras which took the pictures.

When alignment-method is set to epipolar, stereo will apply a 3D transform to both images so
that their epipolar lines will be horizontal. This speeds of stereo correlation as it greatly reduces the
area required for searching.

Epipolar alignment is only available when performing stereo matches using the pinhole stereo session
(i.e. when using stereo -t pinhole), and cannot be used when processing ISIS images at this time.

left-image-crop-win xo� yo� xsize ysize
Do stereo in a sub-region of the left image [default: use the entire image].

139

Chapter B

right-image-crop-win xo� yo� xsize ysize
When combined with left-image-crop-win, do stereo in given subregions of left and right images.
It is important to note that when both of these are speci�ed, we explicitly crop the input images to
these regions, which does not happen when left-image-crop-win alone is speci�ed. In that case we
use the full images but only restrict the computation to the speci�ed region.

force-use-entire-range (default = false)
By default, the Stereo Pipeline will normalize ISIS images so that their maximum and minimum
channel values are ±2 standard deviations from a mean value of 1.0. Use this option if you want to
disable normalization and force the raw values to pass directly to the stereo correlations algorithms.

For example, if ISIS's histeq has already been used to normalize the images, then use this option to
disable normalization as a (redundant) pre-processing step.

individually-normalize (default = false)
By default, the maximum and minimum valid pixel value is determined by looking at both images.
Normalized with the same �global� min and max guarantees that the two images will retain their
brightness and contrast relative to each other.

This option forces each image to be normalized to its own maximum and minimum valid pixel value.
This is useful in the event that images have di�erent and non-overlapping dynamic ranges. You can
sometimes tell when this option is needed: after a failed stereo attempt one of the recti�ed images
(*-L.tif and *-R.tif) may be either mostly white or black. Activating this option may correct this
problem.

Note: Photometric calibration and image normalization are steps that can and should be carried out
beforehand using ISIS's own utilities. This provides the best possible input to the stereo pipeline and
yields the best stereo matching results.

ip-per-tile
How many interest points to detect in each 10242 image tile (default: automatic determination).

ip-detect-method
What type of interest point detection algorithm to use for image alignment. 0 = Custom OBAloG
implementation (default) 1 = SIFT implementation from OpenCV 2 = ORB implementation from
OpenCV If the default method does not perform well, try out one of the other two methods.

nodata-value (default = none)
Pixels with values less than or equal to this number are treated as no-data. This overrides the nodata
values from input images.

B.2 Correlation

pre�lter-mode (= 0,1,2,3) (default = 2)
This selects the pre-processing �lter to be used to prepare imagery before it is fed to the initialization
stage of the pipeline.

0 - None

1 - Subtracted Mean - This takes a preferably large Gaussian kernel and subtracts its value from
the input image. This e�ectively reduces low frequency content in the image. The result is
correlation that is immune to translations in image intensity.

140

The stereo.default File

2 - LoG Filter - Takes the Laplacian of Gaussian of the image, This provides some immunity to
di�erences in lighting conditions between a pair of images by isolating and matching on blob
features in the image.

3 - Sign of LoG - Not recommended for using. It was meant for an experimental XOR cost metric
for correlation. This will still produce results. Though the results may not be as nice as one
would like.

For all of the modes above, the size of the �lter kernel is determined by the prefilter-kernel-width
parameter below.

The choice of pre-processing �lter must be made with thought to the cost function being used (see
cost-mode, below). LoG �lter preprocessing provides good immunity to variations in lighting condi-
tions and is usually the recommended choice.

pre�lter-kernel-width (�oat) (default = 1.4)
This de�nes the diameter of the Gaussian convolution kernel used for the preprocessing modes 1 and
2 above. A value of 1.4 works well for LoG and 25-30 works well for Subtracted Mean.

corr-seed-mode (=0,1,2,3) (default = 1)
This integer parameter selects a strategy for how to solve for the low-resolution integer correlation
disparity, which is used to seed the full-resolution disparity later on.

0 - None - Don't calculate a low-resolution variant of the disparity image. The search range provided
by corr-search is used directly in computing the full-resolution disparity.

1 - Low-resolution disparity from stereo - Calculate a low-resolution version of the disparity
from the integer correlation of subsampled left and right images. The low-resolution disparity
will be used to narrow down the search range for the full-resolution disparity.

This is a useful option despite the fact that our integer correlation implementation does indeed
use a pyramid approach. Our implementation cannot search in�nitely into lower resolutions due
to its independent and tiled nature. This low-resolution disparity seed is a good hybrid approach.

2 - Low-resolution disparity from an input DEM - Use a lower-resolution DEM together with
an estimated value for its error to compute the low-resolution disparity, which will then be used
to �nd the full-resolution disparity as above. These quantities can be speci�ed via the options
disparity-estimation-dem and disparity-estimation-dem-error respectively.

3 - Disparity from full-resolution images at a sparse number of points. This is an advanced
option for terrain having snow and no large-scale features. It is described in section 4.5.

For large images, bigger than MOC-NA, using the low-resolution disparity seed is a de�nitive plus.
Smaller images such as Cassini ISS or MER images should just shut this option o� to save storage
space.

corr-sub-seed-percent (�oat) (default=0.25)
When using corr-seed-mode 1, the solved-for or user-provided search range is grown by this factor
for the purpose of computing the low-resolution disparity.

cost-mode (= 0,1,2) (default = 2)

This de�nes the cost function used during integer correlation. Squared di�erence is the fastest cost
function. However it comes at the price of not being resilient against noise. Absolute di�erence is
the next fastest and is a better choice. Normalized cross correlation is the slowest but is designed
to be more robust against image intensity changes and slight lighting di�erences. Normalized cross
correlation is about 2x slower than absolute di�erence and about 3x slower than squared di�erence.

141

Chapter B

0 - absolute di�erence

1 - squared di�erence

2 - normalized cross correlation

corr-kernel (integer integer) (default = 25 25)
These option determine the size (in pixels) of the correlation kernel used in the initialization step. A
di�erent size can be set in the horizontal and vertical directions, but square correlation kernels are
almost always used in practice.

corr-search (integer integer integer integer)

These parameters determine the size of the initial correlation search range. The ideal search range
depends on a variety of factors ranging from how the images were pre-aligned to the resolution and
range of disparities seen in a given image pair. This search range is successively re�ned during
initialization, so it is often acceptable to set a large search range that is guaranteed to contain all of
the disparities in a given image. However, setting tighter bounds on the search can sometimes reduce
the number of erroneous matches, so it can be advantageous to tune the search range for a particular
data set.

Commenting out these settings will cause stereo to make an attempt to guess its search range using
interest points.

These four integers de�ne the minimum horizontal and vertical disparity and then the maximum
horizontal and vertical disparity.

xcorr-threshold (integer) (default = 2)

Integer correlation to a limited sense performs a correlation forward and backwards to double check
its result. This is one of the �rst �ltering steps to insure that we have indeed converged to a global
minimum for an individual pixel. The xcorr-threshold parameter de�nes an agreement threshold
in pixels between the forward and backward result.

Optionally, this parameter can be set to a negative number. This will signal the correlator to only
use the forward correlation result. This will drastically improve speed at the cost of additional noise.

rm-quantile-percentile (double) (default = 0.85)
See rm-quantile-multiple for details.

rm-quantile-multiple (double) (default = -1)
Used for �ltering disparity values in D_sub. Disparities greater than MULTIPLE*PERCENTILE (of
the histogram) will be discarded. If this value is set greater than zero, this �ltering method will be
used instead of the method using the values RM_MIN_MATCHES and RM_THRESHOLD. This
method will help �lter out clusters of pixels which are too large to be �ltered out by the neighborhood
method but that have disparities signi�cantly greater than the rest of the image.

use-local-homography (default = false)

This �ag, if provided, enables using local homography during correlation, as described in Section
7.2.3.

corr-timeout (integer) (default = 1800)

Correlation timeout for an image tile, in seconds. A non-positive value will result in no timeout
enforcement. A value of 600 seconds should be su�cient in most cases.

142

The stereo.default File

B.3 Subpixel Re�nement

subpixel-mode (= 0-5) (default = 1)
This parameter selects the subpixel correlation method. Parabola subpixel is very fast but will produce
results that are only slightly more accurate than those produced by the initialization step. Bayes EM
(mode 2) is very slow but o�ers the best quality. When tuning stereo.default parameters, it is
expedient to start out using parabola subpixel as a �draft mode.� When the results are looking good
with parabola subpixel, then they will look even better with subpixel mode 2. For inputs with little
noise, the a�ne method (subpixel mode 3) may produce results equivalent to Bayes EM in a shorter
time.

0 - no subpixel re�nement

1 - parabola �tting

2 - a�ne adaptive window, Bayes EM weighting

3 - a�ne window

4 - Lucas-Kanade method (experimental)

5 - a�ne adaptive window, Bayes EM with Gamma Noise Distribution (experimental)

For a visual comparison of the quality of these subpixel modes, refer back to Chapter:7.

subpixel-kernel (integer integer) (default = 35 35) Specify the size of the horizontal and vertical size
(in pixels) of the subpixel correlation kernel. It is advantageous to keep this small for parabola �tting
in order to resolve �ner details. However for the Bayes EM methods, keep the kernel slightly larger.
Those methods weight the kernel with a Gaussian distribution, thus the e�ective area is small than
the kernel size de�ned here.

B.4 Filtering

�lter-mode (integer) (default = 1)
This parameter sets the �lter mode. Three modes are supported as described below. Here, by neigh-
boring pixels for a current pixel we mean those pixels within the window of half-size of rm-half-kernel
centered at the current pixel.

0 - No �ltering.

1 - Filter by discarding pixels at which disparity di�ers from mean disparity of neighbors by more
than max-mean-diff.

2 - Filter by discarding pixels at which percentage of neighboring disparities that are within rm-threshold
of current disparity is less than rm-min-matches.

rm-half-kernel (integer integer) (default = 5 5)
This setting adjusts the behavior of an outlier rejection scheme that �erodes� isolated regions of pixels
in the disparity map that are in disagreement with their neighbors.

The two parameters determine the size of the half kernel that is used to perform the automatic removal
of low con�dence pixels. A 5× 5 half kernel would result in an 11× 11 kernel with 121 pixels in it.

143

Chapter B

max-mean-di� (integer) (default = 3)
This parameter sets the maximum di�erence between the current pixel disparity and the mean of
disparities of neighbors in order for a given disparity value to be retained (for filter-mode 1).

rm-min-matches (integer) (default = 60)
This parameter sets the percentage of neighboring disparity values that must fall within the inlier
threshold in order for a given disparity value to be retained (for filter-mode 2).

rm-threshold (integer) (default = 3)
This parameter sets the inlier threshold for the outlier rejection scheme. This option works in con-
junction with RM_MIN_MATCHES above. A disparity value is rejected if it di�ers by more than
RM_THRESHOLD disparity values from RM_MIN_MATCHES percent of pixels in the region being
considered (for filter-mode 2).

rm-clean-passes (integer) (default = 1)
Select the number of outlier removal passes that are carried out. Each pass will erode pixels that do
not match their neighbors. One pass is usually su�cient.

enable-�ll-holes (default = false)

Enable �lling of holes in disparity using an inpainting method. Obsolete. It is suggested to use instead
point2dem's analogous functionality.

�ll-holes-max-size (integer) (default = 100,000)
Holes with no more pixels than this number should be �lled in.

erode-max-size (integer) (default = 0)
Isolated blobs with no more pixels than this number should be removed.

B.5 Post-Processing (Triangulation)

near-universe-radius (�oat) (default = 0.0)

far-universe-radius (�oat) (default = 0.0)

These parameters can be used to remove outliers from the 3D triangulated point cloud. The points
that will be kept are those whose distance from the universe center (see below) is between near-universe-radius
and far-universe-radius, in meters.

universe-center (default = none)
De�nes the reference location to use when �ltering the output point cloud using the above near and
far radius options. The available options are:

None - Disable �ltering.

Camera - Use the left camera's center as the universe center.

Zero - Use the center of the planet as the universe center.

bundle-adjust-pre�x (string)

Use the camera adjustments obtained by previously running bundle_adjust with this output pre�x.

144

The stereo.default File

point-cloud-rounding-error (double)

How much to round the output point cloud values, in meters (more rounding means less precision
but potentially smaller size on disk). The inverse of a power of 2 is suggested. Default: 1/210 meters
(about 1mm) for Earth and proportionally less for smaller bodies.

save-double-precision-point-cloud (default = false)

Save the �nal point cloud in double precision rather than bringing the points closer to origin and
saving as �oat (marginally more precision at twice the storage).

compute-error-vector (default = false)

When writing the output point cloud, save the 3D triangulation error vector (the vector between the
closest points on the rays emanating from the two cameras), rather than just its length. In this case,
the point cloud will have 6 bands (storing the triangulation point and triangulation error vector)
rather than the usual 4. When invoking point2dem on this 6-band point cloud and specifying the
--errorimage option, the error image will contain the three components of the triangulation error
vector in the North-East-Down coordinate system.

The next several parameters are used for jitter correction for Digital Globe imagery. A usage tutorial
is given in section 4.4.

image-lines-per-piecewise-adjustment (integer) (default = 0) A positive value, e.g., 1000, will turn
on using piecewise camera adjustments to help reduce jitter e�ects. Use one adjustment per this
many image lines.

piecewise-adjustment-percentiles (�oat �oat) (default = 5 95) A narrower range will place the piece-
wise adjustments for jitter correction closer together and further from the �rst and last lines in the
image.

piecewise-adjustment-interp-type (integer) (default = 1) How to interpolate between adjustments.
[1 Linear, 2 Using Gaussian weights]

piecewise-adjustment-camera-weight (�oat) (default = 1.0) The weight to use for the sum of squares
of adjustments component of the cost function. Increasing this value will constrain the adjustments
to be smaller.

num-matches-for-piecewise-adjustment (integer) (default = 90000) How many matches among im-
ages to create based on the disparity for the purpose of solving for jitter using piecewise adjustment.

These last two options are used internally.

compute-piecewise-adjustments-only (default = false)
Compute the piecewise adjustments as part of jitter correction, and then stop.

skip-computing-piecewise-adjustments (default = false)
Skip computing the piecewise adjustments for jitter, they should have been done by now.

145

146

Appendix C

Guide to Output Files

The stereo tool generates a variety of intermediate �les that are useful for debugging. These are listed
below, along with brief descriptions about the contents of each �le. Note that the pre�x of the �lename for
all of these �les is dictated by the �nal command line argument to stereo. Run stereo --help for details.

*.vwip - image feature �les
If alignment-method is not none, the Stereo Pipeline will automatically search for image features to
use for tie-points. Raw image features are stored in *.vwip �les; one per input image. For example,
if your images are left.cub and right.cub you'll get left.vwip and right.vwip. Note: these �les
can also be generated by hand (and with �ner grained control over detection algorithm options) using
the ipfind utility.

*.match - image to image tie-points
The match �le lists a select group of unique points out of the previous .vwip �les that have been
identi�ed and matched in a pair of images. For example, if your images are left.cub and right.cub

you'll get a left__right.match �le.

The .vwip and .match �les are meant to serve as cached tie-point information, and they help speed
up the pre-processing phase of the Stereo Pipeline: if these �les exist then the stereo program will
skip over the interest point alignment stage and instead use the cached tie-points contained in the
*.match �les. In the rare case that one of these �les did get corrupted or your input images have
changed, you may want to delete these �les and allow stereo to regenerate them automatically. This
is also recommended if you have upgraded the Stereo Pipeline software.

*-L.tif - recti�ed left input image
The left input image of the stereo pair, saved after the pre-processing step. This image may be
normalized, but should otherwise be identical to the original left input image.

*-R.tif - recti�ed right input image
Right input image of the stereo pair, after the pre-processing step. This image may be normalized
and possibly translated, scaled, and/or rotated to roughly align it with the left image, but should
otherwise be identical to the original right input image.

*-lMask.tif - mask for left recti�ed image

*-rMask.tif - mask for right recti�ed image
These �les contain binary masks for the input images. These are used throughout the stereo process
to mask out pixels where there is no input data.

*-align-L.exr - left pre-alignment matrix

147

Chapter C

*-align-R.exr - right pre-alignment matrix
The 3 × 3 a�ne transformation matrices that are used to warp the left and right images to roughly
align them. These �les are only generated if alignment-method is not none in the stereo.default

�le. Normally, a single transform is enough to warp one image to another (for example, the right
image to the left). The reason we use two transforms is the following: after the right image is warped
to the left, we would like to additionally transform both images so that the origin (0, 0) in the left
image would correspond to the same location in the right image. This will somewhat improve the
e�ciency of subsequent processing.

*-D.tif - disparity map after the disparity map initialization phase
This is the disparity map generated by the correlation algorithm in the initialization phase. It contains
integer values of disparity that are used to seed the subsequent sub-pixel correlation phase. It is largely
un�ltered, and may contain some bad matches.

Disparity map �les are stored in OpenEXR format as 3-channel, 32-bit �oating point images. (Channel
0 = horizontal disparity, Channel 1 = vertical disparity, and Channel 2 = good pixel mask)

*-RD.tif - disparity map after sub-pixel correlation
This �le contains the disparity map after sub-pixel re�nement. Pixel values now have sub-pixel
precision, and some outliers have been rejected by the sub-pixel matching process.

*-F-corrected.tif - intermediate data product
Only created when alignment-method is not none. This is *-F.tif with e�ects of interest point
alignment removed.

*-F.tif - �ltered disparity map
The �ltered, sub-pixel disparity map with outliers removed (and holes �lled with the inpainting
algorithm if FILL_HOLES is on). This is the �nal version of the disparity map.

*-GoodPixelMap.tif - map of good pixels
An image showing which pixels were matched by the stereo correlator (gray pixels), and which were
�lled in by the hole �lling algorithm (red pixels).

*-PC.tif - point cloud image
The point cloud image is generated by the triangulation phase of Stereo Pipeline. Each pixel in
the point cloud image corresponds to a pixel in the left input image (*-L.tif). The point cloud has
four channels, the �rst three are the Cartesian coordinates of each point, and the last one has the
intersection error of the two rays which created that point (the intersection error is the closest distance
between rays). By default, the origin of the Cartesian coordinate system being used is a point in the
neighborhood of the point cloud. This makes the values of the points in the cloud relatively small,
and we save them in single precision (32 bits). This origin is saved in the point cloud as well using the
tag POINT_OFFSET in the GeoTi� header. To output point clouds using double precision with the
origin at the planet center, call stereo_tri with the option --save-double-precision-point-cloud.
This can e�ectively double the size of the point cloud.

All these images that are single-band can be visualized in stereo_gui (section A.2). The disparities
can be �rst split into the individual horizontal and vertical disparity �les using disparitydebug, then
they can be seen in this viewer as well.

If the input images are map-projected (georeferenced) and the alignment method is none, all the
output images listed above, will also be georeferenced, and hence can be overlayed in stereo_gui on
top of the input imagery (the outputs of disparitydebug will then be georeferenced as well).

The point cloud �le saves the datum (and projection if available) inferred from the input images,
regardless of whether these images are map-projected or not.

148

Guide to Output Files

The point2mesh and point2dem programs can be used to convert the point cloud to formats that are
easier to visualize.

*-stereo.default - backup of the Stereo Pipeline settings �le
This is a copy of the stereo.default �le used by stereo. It is stored alongside the output products
as a record of the settings that were used for this particular stereo processing task.

149

150

Appendix D

Pinhole Models

Ames Stereo Pipeline supports a generic pinhole camera model with several generic lens distortion models
which cover common calibration methods. The generic pinhole model uses the following parameters:

• fx = The focal length in horizontal units.

• fy = The focal length in vertical units.

• cx = The horizontal o�set of the principal point of the camera in the image plane.

• cy = The vertical o�set of the principal point of the camera in the image plane.

• pitch = The size of each pixel in the units used to specify the four parameters listed above. This will
usually either be 1.0 if they are speci�ed in pixel units or alternately the size of a pixel in millimeters.

Along with the basic pinhole camera parameters, a lens distortion model can be added. Note that the units
used in the distortion model must match the units used for the parameters listed above. For example, if
the camera calibration was performed using units of millimeters the focal lengths etc. must be given in
units of millimeters and the pitch must be equal to the size of each pixel in millimeters. The following lens
distortion models are currently supported:

• Null = A placeholder model that applies no distortion.

• Tsai = A common distortion model similar to the one used by OpenCV and THEIA. This model
uses the following parameters:

K1, K2 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

The following equations describe the distortion:

r2 = x2 + y2

x(distorted) = x ∗ (K1r
2 +K2r

4 + 2P1y + P2(
r2

x
+ 2x))

y(distorted) = y ∗ (K1r
2 +K2r

4 + 2P2x+ P1(
r2

y
+ 2y))

References:

151

Chapter D

Roger Tsai, A Versatile Camera Calibration Technique for a High-Accuracy 3D Machine Vision
Metrology Using O�-the-shelf TV Cameras and Lenses

Note that this model uses normalized pixel units.

• Adjustable Tsai = A variant of the Tsai model where any number of K terms and a skew term
(alhpa) can be used. Can apply the AgiSoft Lens calibration parameters.

• Brown-Conrady = An older model based on a centering angle.

K1, K2, K3 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

xp, yp = Principal point o�set.

B1, B2 = Unused parameters.

The following equations describe the distortion:

x = x(distorted)− xp

y = y(distorted)− yp

r2 = x2 + y2

dr = K1r
3 +K2r

5 +K3r
7

x(undistorted) = x+ x
dr

r
+ P1(r2 + 2x2) + 2P2xy

y(undistorted) = y + y
dr

r
+ P2(r2 + 2y2) + 2P1xy

Note that this model uses non-normalized pixel units.

References:

Decentering Distortion of Lenses - D.C. Brown, Photometric Engineering, pages 444-462, Vol. 32,
No. 3, 1966

Close-Range Camera Calibration - D.C. Brown, Photogrammetric Engineering, pages 855-866, Vol.
37, No. 8, 1971

• Photometrix = A model matching the conventions used by the Australis software from Photometrix.
This model uses the following parameters:

K1, K2, K3 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

xp, yp = Principal point o�set.

phi = Tangential distortion angle in radians.

152

Pinhole Models

The following equations describe the distortion:

x = x(distorted)− xp

y = y(distorted)− yp

r2 = x2 + y2

dr = K1r
3 +K2r

5 +K3r
7

x(undistorted) = x+ x
dr

r
− (P1r

2 + P2r
4)sin(phi)+

y(undistorted) = y + y
dr

r
+ (P1r

2 + P2r
4)cos(phi)

Note that this model uses non-normalized pixel units.

D.1 File Format

ASP pinhole model �les are written in an easy to work with plain text format using the extension .tsai.
A sample �le is shown below:

VERSION_3

fu = 28.429

fv = 28.429

cu = 17.9712

cv = 11.9808

u_direction = 1 0 0

v_direction = 0 1 0

w_direction = 0 0 1

C = 266.943 -105.583 -2.14189

R = 0.0825447 0.996303 -0.0238243 -0.996008 0.0832884 0.0321213 0.0339869 0.0210777 0.9992

pitch = 0.0064

Photometrix

xp = 0.004

yp = -0.191

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = -5.28558e-011

p1 = 7.2359e-006

p2 = 2.2656e-006

b1 = 0.0

b2 = 0.0

The �rst half of the �le is the same for all pinhole models:

153

Chapter D

• VERSION_X = A header line used to track the format of the �le.

• fu, fv, cu, cv = The �rst four intrinsic parameters described in the previous section.

• u, v, and w_direction = These lines allow an additional permutation of the axes of the camera
coordinates. By default, the positive column direction aligns with x, the positive row direction aligns
with y, and downward into the image aligns with z.

• C = The location of the camera center, usually in the geocentric coordinate system (GCC).

• R = The rotation matrix describing the camera's pose in the coordinate system.

• pitch = The pitch intrinsic parameter described in the previous section.

The second half of the �le describes the lens distortion model being used. The name of the distortion
model appears �rst, followed by a list of the parameters for that model. The number of parameters may
be di�erent for each distortion type. Samples of each format are shown below:

• Null

NULL

• Tsai

TSAI

k1 = 1.31024e-04

k2 = -2.05354e-07

p1 = 0.5

p2 = 0.4

• Adjustable Tsai

AdjustableTSAI

Radial Coeff: Vector3(1.31024e-04, 1.31024e-07, 1.31024e-08)

Tangential Coeff: Vector2(-2.05354e-07, 1.05354e-07)

Alpha: 0.4

• Brown-Conrady

BrownConrady

xp = 0.5

yp = 0.4

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = 1.31024e-08

p1 = 0.5

p2 = 0.4

phi = 0.001

• Photometrix

154

Pinhole Models

Photometrix

xp = 0.004

yp = -0.191

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = -5.28558e-011

p1 = 7.2359e-006

p2 = 2.2656e-006

b1 = 0.0

b2 = 0.0

For several years Ames Stereo Pipeline generated pinhole �les in the binary .pinhole format. That format
has been deprecated and can be read but will no longer be written. At some point in the future support
for that �le format will be dropped.

Also in the past Ames Stereo Pipeline has generated a shorter version of the current �le format, also with
the extension .tsai, which only supported the TSAI lens distortion model. Existing �les in that format
can still be used by ASP.

155

156

Bibliography

[1] J. A. Anderson, S. C. Sides, D. L. Soltesz, T. L. Sucharski, and K. J. Becker. Modernization of the
Integrated Software for Imagers and Spectrometers. In S. Mackwell and E. Stansbery, editors, Lunar
and Planetary Science XXXV, number #2039. Lunar and Planetary Institute, Houston (CD-ROM),
March 2004.

[2] J.A. Anderson. ISIS Camera Model Design. In Proc of the Lunar and Planetary Science Conference
(LPSC) XXXIX, page 2159, March 2008.

[3] Simon Baker, Ralph Gross, and Iain Matthews. Lucas-Kanade 20 Years On: A Unifying Framework.
International Journal of Computer Vision, 56:221�255, 2004.

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust features.
In Computer Vision and Image Understanding (CVIU), volume 110, pages 346�359, 2008. URL http:

//www.vision.ee.ethz.ch/~surf/.

[5] Michael Broxton, Ara V. Ne�an, Zachary Moratto, Taemin Kim, Michael Lundy, and Aleksandr V.
Segal. 3D Lunar Terrain Reconstruction from Apollo Images . In to appear in the Proceedings of the
5th International Symposium on Visual Computing, 2009.

[6] USGS Astrogeology Science Center. USGS ISIS Documentation. Isis 3 Application Documen-
tation http://isis.astrogeology.usgs.gov/Application/index.html. URL http://isis.astrogeology.

usgs.gov/Application/index.html.

[7] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. Algorithm
887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math.
Softw., 35(3):22:1�22:14, October 2008. ISSN 0098-3500. doi: 10.1145/1391989.1391995. URL http:

//doi.acm.org/10.1145/1391989.1391995.

[8] The Open Scene Graph Community. The open scene graph website. 2009. URL http://www.

openscenegraph.org/projects/osg.

[9] The CGIAR Consortium for Spatial Information. CGIAR-CSI SRTM 90m DEM Digital Elevation
Database. URL http://srtm.csi.cgiar.org.

[10] L. Gaddis, J. Anderson, K. Becker, T. Becker, D. Cook, K. Edwards, E. Eliason, T. Hare, H. Kie�er,
E. M. Lee, J. Mathews, L. Soderblom, T. Sucharski, J. Torson, A. McEwen, and M. Robinson. An
Overview of the Integrated Software for Imaging Spectrometers (ISIS). In Lunar and Planetary Science
Conference, volume 28, page 387, March 1997.

[11] GeoEye. Sample Imagery Request Form. GeoEye sample imagery request form
http://geoeye.com/CorpSite/solutions/learn-more/sample-imagery.aspx. URL http://geoeye.

com/CorpSite/solutions/learn-more/sample-imagery.aspx.

157

http://www.vision.ee.ethz.ch/~surf/
http://www.vision.ee.ethz.ch/~surf/
http://isis.astrogeology.usgs.gov/Application/index.html
http://isis.astrogeology.usgs.gov/Application/index.html
http://doi.acm.org/10.1145/1391989.1391995
http://doi.acm.org/10.1145/1391989.1391995
http://www.openscenegraph.org/projects/osg
http://www.openscenegraph.org/projects/osg
http://srtm.csi.cgiar.org
http://geoeye.com/CorpSite/solutions/learn-more/sample-imagery.aspx
http://geoeye.com/CorpSite/solutions/learn-more/sample-imagery.aspx

Chapter D

[12] Digital Globe. Radiometric Use of WorldView 2 Imagery. Description of the WV02 camera,
. URL http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_

Imagery%20%281%29.pdf.

[13] Digital Globe. Satellite Imagery and Geospatial Information Products. Digital Globe sam-
ple imagery http://www.digitalglobe.com/product-samples, . URL http://www.digitalglobe.com/

product-samples.

[14] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition, 2004.

[15] Kurt Konolige. Sparse sparse bundle adjustment. In British Machine Vision Conference, Aberystwyth,
Wales, 08/2010 2010.

[16] Daniel Machacek. Images from the long-awaited Dawn Vesta data set. http://www.planetary.org/
blogs/guest-blogs/20121129-machacek-dawn-vesta.html, 2012.

[17] M. C. Malin and K. S. Edgett. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise
through primary mission. Journal of Geophysical Research, 106(E10):23429�23570, October 2001.

[18] M. C. Malin, G. E. Danielson, A. P. Ingersoll, H. Masursky, J. Veverka, M. A. Ravine, and T. A.
Soulanille. Mars Observer Camera. Journal of Geophysical Research, 97(E5):7699�7718, May 1992.

[19] Alfred S McEwen. Photometric functions for photoclinometry and other applications. Icarus, 92(2):
298�311, 1991.

[20] Christian Menard. Robust Stereo and Adaptive Matching in Correlation Scale-Space. PhD thesis,
Institute of Automation, Vienna Institute of Technology (PRIP-TR-45), January 1997.

[21] Zach Moore, Dan Wright, Chris Lewis, and Dale Schinstock. Comparison of bundle adjustment for-
mulations. In ASPRS Annual Conf., Baltimore, Maryland, 2009.

[22] Zachary Moratto. Creating control networks and bundle adjusting with isis3. http://lunokhod.org/
?p=468, 2012.

[23] Zachary Moratto. Making well registered dems with isis and ames stereo pipeline. http://lunokhod.
org/?p=559, 2012.

[24] Ara V. Ne�an, Kyle Husmann, Michael Broxton, Mattew D. Hancher, and Michael Lundy. A Bayesian
Formulation for Subpixel Re�nement in Stereo Orbital Imagery. In to appear in the Proceedings of the
2009 IEEE International Conference on Image Processing, 2009.

[25] H.K. Nishihara. PRISM: A Practical real-time imaging stereo matcher. Optical Engineering, 23(5):
536�545, 1984.

[26] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magnenat. Comparing ICP Vari-
ants on Real-World Data Sets. Autonomous Robots, 34(3):133�148, February 2013.

[27] Greg Slabaugh, Ron Schafer, and Mark Livingston. Optimal ray intersection for computing 3d points
from n-view correspondences. http://www.soi.city.ac.uk/~sbbh653/publications/opray.pdf,
2001.

[28] Andrew Stein, Andres Huertas, and Larry Matthies. Attenuating stereo pixel-locking via a�ne window
adaptation. In IEEE International Conference on Robotics and Automation, pages 914 � 921, May
2006.

158

http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_Imagery%20%281%29.pdf
http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_Imagery%20%281%29.pdf
http://www.digitalglobe.com/product-samples
http://www.digitalglobe.com/product-samples
http://www.planetary.org/blogs/guest-blogs/20121129-machacek-dawn-vesta.html
http://www.planetary.org/blogs/guest-blogs/20121129-machacek-dawn-vesta.html
http://lunokhod.org/?p=468
http://lunokhod.org/?p=468
http://lunokhod.org/?p=559
http://lunokhod.org/?p=559
http://www.soi.city.ac.uk/~sbbh653/publications/opray.pdf

BIBLIOGRAPHY

[29] Changming Sun. Rectangular Subregioning and 3-D Maximum-Surface Techniques for Fast Stereo
Matching. International Journal of Computer Vision, 47(1-3), 2002.

[30] Richard Szeliski and Daniel Scharstein. Sampling the Disparity Space Image. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 26:419 � 425, 2003.

[31] Bill Triggs, Philip F. Mclauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment
� a modern synthesis. Lecture Notes in Computer Science, 1883:298+, January 2000.

[32] AZ U.S. Geological Survey, Flagsta�. Integrated software for imagers and spectrometers (ISIS). 2009.
URL http://isis.astrogeology.usgs.gov/.

159

http://isis.astrogeology.usgs.gov/

	Introduction
	Background
	Human vs. Computer: When to Choose Automation?
	Software Foundations
	NASA Vision Workbench
	The USGS Integrated Software for Imagers and Spectrometers

	Getting Help and Reporting Bugs
	Typographical Conventions
	Referencing the Ames Stereo Pipeline in Your Work
	Warnings to Users of the Ames Stereo Pipeline

	I Getting Started
	Installation
	Binary Installation
	Quick Start for ISIS Users
	Quick Start for Digital Globe Users
	Common Errors

	Installation from Source
	Settings Optimization
	Performance Settings
	Logging Settings

	Tutorial: Processing Mars Orbiter Camera Imagery
	Quick Start
	Preparing the Data
	Loading and Calibrating Images using ISIS
	Aligning Images

	Tutorial: Processing Earth Digital Globe Imagery
	Processing Raw
	Processing Map-Projected Imagery
	Handling CCD Boundary Artifacts
	Managing Camera Jitter
	Dealing with Terrain Lacking Large-Scale Features
	Processing Multi-Spectral Images

	The Next Steps
	Stereo Pipeline in More Detail
	Setting Options in the stereo.default File
	Performing Stereo Correlation
	Running the GUI Frontend
	Specifying Settings on the Command Line
	Stereo on Multiple Machines
	Running Stereo with Map-projected Images
	Multi-View Stereo
	Diagnosing Problems
	Dealing with Long Run-times

	Visualizing and Manipulating the Results
	Building a 3D Mesh Model
	Building a Digital Elevation Model and Ortho Image
	Orthorectification of an Image From a Different Source
	Correcting Camera Positions and Orientations
	Alignment to Point Clouds From a Different Source
	Creating DEMs Relative to the Geoid/Areoid
	Converting to the LAS Format
	Generating Color Hillshade Maps
	Building Overlays for Moon and Mars Mode in Google Earth
	Using DERT to Visualize Terrain Models

	Tips and Tricks

	II The Stereo Pipeline in Depth
	Stereo Correlation
	Pre-Processing
	Disparity Map Initialization
	Debugging Disparity Map Initialization
	Search Range Determination
	Local Homography

	Sub-pixel Refinement
	Triangulation

	Bundle Adjustment
	Overview
	Bundle adjustment using ASP
	Bundle adjustment using ISIS
	Tutorial: Processing Mars Orbital Camera Imagery

	Solving for Camera Poses Based on Images
	Camera Solve Overview
	Example: Apollo 15 Metric Camera
	Example: IceBridge DMS Camera

	Shape-from-Shading
	Running sfs at 1 meter/pixel using a single image
	SfS with multiple images in the presence of shadows
	Insights for getting the most of sfs

	Data Processing Examples
	Guidelines for Selecting Stereo Pairs
	Mars Reconnaissance Orbiter HiRISE
	Columbia Hills

	Mars Reconnaissance Orbiter CTX
	North Terra Meridiani

	Mars Global Surveyor MOC-NA
	Ceraunius Tholus

	Mars Exploration Rovers
	PANCAM, NAVCAM, HAZCAM

	K10
	Lunar Reconnaissance Orbiter LROC NAC
	Lee-Lincoln Scarp

	Apollo 15 Metric Camera Images
	Ansgarius C

	Cassini ISS NAC
	Rhea

	Digital Globe Imagery
	GeoEye and Astrium Imagery / RPC Imagery
	Dawn (FC) Framing Camera

	III Appendices
	Tools
	stereo
	Entry Points
	Decomposition of Stereo

	stereo_gui
	Use as an Image Viewer
	Other Functionality

	parallel_stereo
	Advanced usage

	bundle_adjust
	Ground control points

	point2dem
	Comparing with MOLA Data
	Post Spacing
	Using with LAS or CSV Clouds

	point2mesh
	dem_mosaic
	dem_geoid
	dg_mosaic
	mapproject
	disparitydebug
	orbitviz
	cam2map4stereo.py
	pansharp
	datum_convert
	point2las
	pc_align
	The input point clouds
	Alignment method
	File formats
	The alignment transform
	Applying a previous transform
	Error metrics and outliers
	Output point clouds and convergence history
	Manual alignment
	Troubleshooting

	pc_merge
	wv_correct
	lronac2mosaic.py
	image_calc
	colormap
	hillshade
	image2qtree
	geodiff
	sfs
	undistort_image
	camera_calibrate
	camera_solve
	icebridge_kmz_to_csv
	lvis2kml
	GDAL Tools

	The stereo.default File
	Preprocessing
	Correlation
	Subpixel Refinement
	Filtering
	Post-Processing (Triangulation)

	Guide to Output Files
	Pinhole Models
	File Format

	Bibliography

